Molecular Detection and Antibiotic Sensitivity of Acinetobacter baumannii isolated from Clinical Samples in Thi-Qar- Southern Iraq

Authors

  • Ruqayah Taher Habash Department of Biology, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Iraq.
  • Dhuha Mahdi Jabir Department of Biology, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Iraq.

DOI:

https://doi.org/10.32792/jmed.2025.29.8

Keywords:

multiple antibiotic resistance, A. baumannii, resistance genes, ceftazidime, ciprofloxacin, and imipenem

Abstract

Acinetobacter baumannii is a gram-negative coccobacillus and a critical global
health threat due to its high antibiotic resistance, particularly in hospital settings
and intensive care units (ICUs). As an ESKAPE pathogen, it causes severe
infections such as pneumonia, wound infections, and bloodstream infections,
especially in immunocompromised patients.This study aimed to characterize A.
baumannii clinical isolates in Southern Iraq, determine their antibiotic resistance
profiles, and identify key resistance genes. A total of 50 clinical isolates were
collected from Nasiriyah and Al-Hussein Hospitals, including sputum (28%),
burns (48.3%), and blood samples (24%). Identification and antimicrobial
susceptibility testing were performed using the VITEK-Compact system, while
molecular characterization was carried out using PCR to detect resistance genes.
Among the isolates, high resistance rates were observed in MDR strains,
particularly to ampicillin-sulbactam (95%), cefazoline (95%), piperacillin
(90%), doxycycline (90%), ceftazidime (80%), cefotaxime (80%), ciprofloxacin
(80%), levofloxacin (75%), ceftriaxone (75%), and imipenem (50%). Molecular
analysis confirmed the presence of resistance genes including blaOXA-51, BAP,
CsuE, and OmpA. The findings reveal an alarming prevalence of multidrug
resistant A. baumannii in clinical settings in Southern Iraq, highlighting the
urgent need for effective antimicrobial stewardship programs, strict infection
control measures, and the development of innovative therapeutic strategies to
combat these resistant pathogens.

References

Pour, N. K., Dusane, D. H., Dhakephalkar, P. K., Zamin, F. R., Zinjarde, S. S., & Chopade, B. A. (2011). Biofilm

formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunology &

Medical Microbiology, 62(3), 328-338.‏ https://doi.org/10.1111/j.1574-695X.2011.00818.x

Peleg, A. Y., Seifert, H., & Paterson, D. L. (2008). Acinetobacter baumannii: emergence of a successful pathogen. Clinical

microbiology reviews, 21(3), 538-582.‏ https://doi.org/10.1128/cmr.00058-07

Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic

resistance. Nature reviews microbiology, 13(1), 42-51.doi:10.1038/nrmicro3380Published online 1 December 2014

Kyriakidis, I., Vasileiou, E., Pana, Z. D., & Tragiannidis, A. (2021). Acinetobacter baumannii antibiotic resistance

mechanisms. Pathogens, 10(3), 373.‏ ; https://doi.org/10.3390/pathogens10030373

Akova, M. (2016). Epidemiology of antimicrobial resistance in bloodstream infections. Virulence, 7(3), 252-266.‏

https://doi.org/10.1080/21505594.2016.1159366

Joly-Guillou, M. L. (2005). Clinical impact and pathogenicity of Acinetobacter. Clinical microbiology and infection,

(11), 868-873.‏ https://doi.org/10.1111/j.1469-0691.2005.01227.x

Rodriguez-Bano, J., Lopez-Cerero, L., Navarro, M. D., de Alba, P. D., & Pascual, A. (2008). Faecal carriage of extended

spectrum β-lactamase-producing Escherichia coli: prevalence, risk factors and molecular epidemiology. Journal of antimicrobial

chemotherapy,62(5),1142-1149. https://doi.org/10.1093/jac/dkn293

Jawad, A., Snelling, A. M., Heritage, J., & Hawkey, P. M. (1998). Comparison of ARDRA and rec A-RFLP analysis for

genomic species identification of Acinetobacter spp. FEMS microbiology letters, 165(2), 357-362. https://doi.org/10.1111/j.1574

1998.tb13170.x ‏

Zidan, M. E., Samanje, J., & Nasir, H. M. (2022). Identification of Antibiotic Resistance of Acinetobacter baumannii in

Iraqi Patients. Journal of Techniques, 4(Special Issue), 28-32.‏ : http://journal.mtu.edu.iq

clinical impact Kempf, M., & Rolain, J. M. (2012). Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe:

and therapeutic options. International journal of antimicrobial agents, 39(2), 105-114.‏

https://doi.org/10.1016/j.ijantimicag.2011.10.004

quinolones, Prashanth, K., & Badrinath, S. (2004). In vitro susceptibility pattern of Acinetobacter species to commonly used

cephalosporins, and aminoglycosides. Indian journal of medical microbiology, 22(2), 97-103.‏

https://doi.org/10.1016/S0255-0857(21)02888-7

D'Arezzo, S., Principe, L., Capone, A., Petrosillo, N., Petrucca, A., & Visca, P. (2011). Changing carbapenemase gene

pattern in an epidemic multidrug-resistant Acinetobacter baumannii lineage causing multiple outbreaks in central Italy. Journal of

Antimicrobial Chemotherapy, 66(1), 54-61. https://doi.org/10.1093/jac/dkq407

Mustafa, M. S., & Abdullah, R. M. (2019). Detection of 16S rRNA Methylases and Co-Resistance with β-lactams among

Klebsiella pneumoniae Isolates from Iraqi Patients. Baghdad Sci J, 16(3), 580-587.‏ : http://dx.doi.org/10.21123/bsj.2019.16.3.0580

Abd Al-Hassan, R. E., Hafidh, R. R., & Zaman, M. Z. (2023). Identification of klebsiella oxytoca by vitek-2 system in

baghdad hospitals. Journal of the Faculty of Medicine Baghdad, 65(4), 374-381. https://doi.org/10.32007/jfacmedbagdad.2154

Downloads

Published

2025-06-30