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model to produce individual alerts on air pollution exposures. An artificial group
of 100 patients with asthma, COPD and ischemic heart disease is modeled in 90
days. The first stage entails the training of a logistic regression model to estimate
short-term exacerbation risk (with an AUC of 0.979 and an accuracy of 0.961).
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1. Introduction

One of the most important environmental issues of the contemporary time is the adverse effect of air pollution on the
health of the global population (1). Epidemiology proves a direct cause and effect relationship between the exposure to
pollutants especially fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) and morbidity and mortality
due to cardiorespiratory diseases like asthma, chronic obstructive pulmonary disease (COPD) and ischemic heart disease
(2), (3). This association leaves an amazing economic and health care cost to any society in the world, which is why there
is an imperative to come up with innovative and effective intervention strategies (4).

The existing public health control initiatives mainly depend on population air quality indices (AQI) and general-level
warnings. Although such macro-scale strategies prove to be useful in strengthening the general awareness, their
fundamental flaws are acute since they are deprived of individualization (5). The AQI broadcasting standard does not
consider personal factors of sensitivity (i.e., underlying medical conditions, age, genetic factors), real-time personal
location, and routine activity of the day. As a result, acommon and general warning is sent to both a healthy adult working
in the house and a child with serious asthma outside, without offering actionable and risk-specific advice on people at
greatest risk (6).

This gap can be bridged by the introduction of digital health technologies. The merger of multi-source data streams, such
as Electronic Health Records (EHRs), wearable sensors giving physiological information, 0T environmental monitors,
and real-time data, and high-resolution air quality forecast models allow shifting the scale of environmental health
management not on a population level but at a micro-level, that is, a personal level (7), (8). The basis of accurate exposure
assessment and custom-made health responses is developed through this data fusion.

In order to transform this data potential into effective prevention, a hybrid approach to analysis is suggested. Machine
Learning (ML) does a very good job at detecting non-linear, complex trends in high-dimensional data, making it
particularly good at predicting cardiorespiratory exacerbation of a particular individual, given their profile and the
surrounding environment (9). Nevertheless, it does not suffice to predict and intervene. Optimization modeling offers a
complement advantage in that it is a systematic, prescriptive procedure of the most plausible course of action through the
synthesis of conflicting goals and constraints (10). Here, optimization can be used to come up with a viable daily schedule
that reduces individual exposure at the expense of necessary activity needs, personal preferences and logistical constraints.
The gap between the generic and population-wide air pollution alerts and the necessity of the personalized and practical
advice to avoid the acute cardiorespiratory exacerbation in vulnerable individuals is critical. Current systems do not use
current data streams and computing methods to provide dynamic and context-sensitive interventions that are both effective
and realistically address day-to-day life.

The proposed research is expected to design, create, and code a new hybrid ML-optimization model to create
individualized alerts regarding air pollution exposure. The specific objectives are:

1. To train and test a machine learning model that would be accurate when forecasting the likelihood of a person
experiencing a cardiorespiratory exacerbation, short-term (24-48 hours) by incorporating individually collected
health, activity, and high-resolution environmental exposure measures.

2. Toproduce a constrained optimization, model the risk score which is predicted and use it to produce a customized
access to daily activity, reduce the integrated pollution exposure under user-specific constraints on the key
activities and preferences.

3. Inorder to test the integrated framework on a simulated, real world dataset, which is the predictive efficacy, the

exposure reduction potential, and operational feasibility.
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The initial contributions of the piece are three. First, it establishes a new interdisciplinary structure of combining
predictive analytics (ML) with prescriptive analytics (optimization) to the environmental health environment. Second, it
goes past risk prediction to provide actionable and personalized daily plans, which bridges the feasibility digital health
interventions gap. Third, it offers a computational model that can be scaled to illustrate opportunities in integrating into
the future mobile health (mHealth) systems in proactive management of chronic diseases.

The rest of this paper is structured in the following way. Section 2 provides a literature review of the related environmental
epidemiology, ML in health, and optimization in public health. Section 3 specifies the methodology, i.e., the data
simulation, the ML risk prediction model, and the optimization formulation. Section 4 includes the findings of the model
validation and performance analysis. The implication, limits and future research directions are discussed in section 5.

Lastly, Section 6 is the conclusion of the paper.

2. Literature Review

2.1. Epidemiology of Air Pollution and Health

Much epidemiological evidence creates a solid, causal connection between temporary exposure to air pollution and acute,
cardiorespiratory health occasions (11). Time-series and case-crossover studies have consistently shown that high levels
of pollutants, especially PM 2.5 and NO2, correlate with a high level of hospitalization, emergency room visits, and death
caused by underlying conditions Such exacerbations are most effectively noted in asthma, in which pollution is a
bronchoconstrictor and inflammatory stimulator, and in COPD, in which it exacerbates respiratory symptoms and lung
performance (12). Moreover, acute exposure is also associated with the increased risk of myocardial infarction,
dysfunction of the heart due to decompensation, and cardiac arrhythmias, which is frequently mediated by systemic
inflammation, endothelial dysfunction, and imbalance in the autonomic nervous system (13). This is a well-characterized
dose-response relationship, which offers the clinical basis of specifically designed intervention measures to alleviate
exposure during periods of maximum risk (14).

2.2. Machine Learning in Environmental Health

The use of machine learning (ML) algorithms in environmental health issues has increased significantly, going beyond
the conventional regression models. These more sophisticated algorithms, such as random forests, gradient boosting
machines (e.g., XGBoost) and deep learning architectures, are being used more and more to identify the involved
environmental exposures, socioeconomic determinants, and population health outcomes as complex, non-linear
interactions (15). They are applied to make predictions of hospital admission rates of respiratory illnesses basing on
predictive air quality, to locate hot spots of health risk on a spatial scale, and to find unobvious interaction effects between
the combination of various pollutants and meteorological conditions (16). The main advantage of ML in this area is that
it is able to process multi-source high-dimensional data. Nevertheless, there is one very important shortcoming that can
be noted: most of these applications remain at the stage of predictive analytics (17). They are geared towards predicting
risk or categorizing results with great precision but do not go further to translate these predictions into definite, practical
advice to individuals. The result is usually a risk score or a probability and there is a disconnect between the knowledge
and the action intervention (18).

2.3. Optimization in Public Health and Logistics

Operations research gives rise to optimization techniques as a well-developed tool of planning and decision making in
the public health and logistics on the systemic levels (19). These techniques are regularly used to address large-scale

problems, including optimal distribution of medical resources during an outbreak, efficient vaccine distribution networks,
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scheduling of personnel in healthcare facilities and routing of emergency services (20). Maximization of efficiency or
reduction of cost under a given set of constraints is done by using linear programming, integer programming and network
flow models. Although these prescriptive analytics techniques have proved potent at the macro-level when it comes to
the management of resources, the application of these techniques to the individual level of personal exposure management
has received very little extension (21). Optimization of the daily activities and movements of a person into minimizing
his/her health risk, which is a dynamically constrained problem, personal preference, and real-time data is a niche that
has not been fully tackled.

2.4. Digital Phenotyping and Personal Sensing

Digital phenotyping is a discipline that makes use of ubiquitous sensors in smartphones and wearable technology to
provide constant and dense longitudinal information about individual behavior, physiology and the environment (22). The
exposure estimates are based on the location derived through the use of global positioning system (GPS) logs, which are
then bound to spatial pollution models. Physical activity and physiological stress are capturing the accelerators and heart
rate sensors. Mobile applications were used in the momentary assessment of the ecological (EMA) of symptoms (23).
Meanwhile, the appearance of the low-cost, Internet of Things (loT) air quality monitors allow forming hyperlocal
pollution maps (24). All these technologies allow constructing rich and individualized exposure profiles that go well
beyond the approximate residential address data utilized in the traditional epidemiology and offer that granular, real-time
data necessary to actually make personalized health interventions (25).

2.5. Identified Research Niche and Synthesis

The literature review shows that there are three parallel but loosely interrelated strands of research interest which are (1)
robust epidemiological evidence describing the health problem, (2) leading scientific ML models with the ability to predict
individual risk based on new data streams, and (3) established optimization models that describe prescriptive decision-
making in logistics. At their intersection a major gap is detected (26). The current research in ML health addresses
predictive but not prescriptive issues. The current optimization tools in health are generic and do not target individual and
dynamic risk (27). Although digital sensing yields the required data substance, there is no formalized framework that
holistically incorporates a predictive ML model (to measure individual risk, which varies over time) with a prescriptive
optimization model (to produce an action plan that is practical and tailored). Hence, the research gap that has been
recognized in this study is the creation of an integrated hybrid ML-optimization framework to produce personalized,
actionable environmental health information to prevent acute cardiorespiratory exacerbations (28). Table 1 introduces
limitations of current methods and applications.

Table 1: Summary of Selected Previous Studies on Air Pollution and Health Modelling.

Study Focus / Population/Data Performance / Key Main Limitation
Key Method : (from our
Model Type Scale Metric .
perspective)
2:5% (95% Cl: 1.5 Population-level
Epidemiology & Time-series City-wide (500k - 3.5%) increase in op i
h . o association, no individual
Health Risk regression 5M pop.) COPD admissions per - L
risk prediction.
10 pg/m® PMz.s
. . Predicts aggregate
ML for Hospital Regional hospital AUC: 0.78 O._82 for admissions, not
o Random Forest data (50-100k next-day respiratory : L.
Admissions I personalized risk; no
records) admissions - -
prescribed actions.
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Study Focus / Population/Data Performance / Key Main Limitation
Key Method : (from our
Model Type Scale Metric -
perspective)
. i Personal exposure Quantifies exposure but
Personalized GPS + Lanq Cohort study differed from static does not predict health
Exposure Use Regression _ .
(n=100-500) estimate by ~30% on outcomes or suggest
Assessment (LUR) -
average. mitigation.
Activity . Simulated Reduced theoretical Uses generic health
. Constrained S . functions, not
Recommendation L individuals exposure by ~25% in ; S
Optimization _ p . personalized, clinically
(Non-health) (n=1,000) simulations. . h
validated risk models.
Focus on environmental
. LSTM + Urban sensor ) forecasting only, no health
Pg:l}abt:gi '\élcl)_rgggst Numerical network (50-100 Pl\fgs fo/rrf]ia:grlzl 4IhS E: outcome or
Model stations) H9 ' personalization
component.

3. Methodology

3.1. Overall Conceptual Framework

The hybrid framework that was proposed will be a two-stage pipeline with the sequence, that is, the steps followed to
refine multi-source raw data into an actionable and personalized health intervention [29]. The personalized risk prediction
is the output of Stage 1 that is an Machine Learning (ML) model that processes these integrated inputs. The results of this
risk score are subsequently passed as a primary input to Stage 2 which is a constrained Optimization Model [30]. The
optimization engine produces an optimal set of recommendation by minimizing exposure and disruption, which produces
a Personalized Daily Action Plan which is, of course, specific to the context and constraints of the individual [31].

3.2. Data Simulation and Description

A powerful synthetic data generation strategy is chosen because of the high ethical and practical difficulties that are
related to the obtaining and dissemination of real-time, multi-modal personal health, location and environmental
information [32]. Using this methodology, a realistic, configurable and privacy preserving dataset can be constructed that
reflects the statistical relationships and complexities present in the real-world system and is realistic. N=5,000 synthetic
cohort of individuals are created, and profiles are stochastically assigned on epidemiological distributions. The important
data layers are simulated in the following way:

1. Clinical & Demographic Layer: The snippets of Synthetic Electronic Health Record (EHR) are developed, such
as age, gender, the presence of pre-existing conditions (asthma, COPD, Ischemic Heart Disease), and a potential
history of past exacerbations with a probability.

2. Personal Activity & Mobility Layer: Daily Routines are modeled that include fixed (e.g. work, school) and
flexible (e.g. exercise, shopping) events. GPS traces are created according to the schedule of every person and a
random mobility model, and activity levels measured by wearables (e.g., the number of steps taken, heart rate)
are simulated, respectively.

3. Environmental Exposure Layer: Over a one-year period, high resolution (1km x 1km) 1-hour air pollution fields

of PM2.5, NO2, and O3 are data simulated considering both spatial autocorrelation and time series variation
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(e.g. rush-hours). The exposure profiles of a particular person are computed as a result of fusing an individual
simulated GPS trace with these fields of pollution.

4. Meteorological Data Layer: Hourly data of temperature and relative humidity are simulated and are correlated
seasonally and with level of pollution where necessary.

3.3. Stage 1: Machine Learning Model for Exacerbation Risk Prediction

During this phase, a binary classification model is created to forecast the risk of exacerbation of a person in the short
term. The target variable, Y;(t) is a binary label which represents a High-Risk Exacerbation Day of a particular person i
in a 2448-hour window after time t. It is an augmented representation with a wide range of features, such as lagged
moving averages (6h, 24h, 48h) of personal pollution exposure, acute symptom triggers based on activity data,
chronological indicators (hour of day, day of the week, season), and interaction terms between pollutant concentrations
and binary disease flags [33].

The three state-of-the-art displaying ML algorithms including XGBoost, an RF and a Long Short-Term Memory (LSTM)
network are trained and compared in a rolling-origin time-series cross-validation scheme that avoids cross-time data
leakage. The grid search is used to perform the hyperparameter tuning. The most successful model is used and the
probability of the positive case as the output of the model is the personalized, time-varying Risk Score, R;(t) € [0,1].

3.4. Stage 2: Optimization Model for Alert/Plan Generation

A risk score R;(t) of Stage 1 is incorporated in a prescriptive optimization model that is represented as a Mixed-Integer
Linear Program (MILP). The model's core is defined by:
e Decision Variables: This is a set of binary decision variables x, ., indicating whether to adopt a particular
mitigation measure a at time slot ¢ (e.9.Xnqsk, 14:00 = 1).
e Objective Function: The minimization of a multi-objective function is done: Z = w; Totalgxposure +
w, Totalpisryption — W3 Ri(t). Weights (wy, w,, ws) are used to balance the minimization of the estimated
cumulative exposure, the cost of the activity disruption, and the maximization of risk avoidance.
e Constraints: The solution space is constrained by realistic constraints:

o Essential Activities: There are events (e.g. work hours) that are considered immutable.

o Logical Consistency: An activity cannot be rescheduled to time slot which is occupied by another fixed
activity.

o User Preferences: The constraints are imposed on some actions (e.9., X Xmask »t < 4, which means
that there can be no more than four 15-minute mask-wearing periods).

o Exposure Estimation: An individual is estimated to be exposed to a concentration of environmental
data, expressed as a linear function of the location and set of actions at time t, and the estimated exposure
concentration relies on environmental data layer and predetermined efficacy factors to each action (ex:
mask filtration efficiency).

3.5. Performance Evaluation Metrics

The Gurobi solver is used to solve the MILP to optimality. The solution in the form of a vector x is converted into a
Personalized Daily Action Plan, which contains what to do and when. The framework is assessed with the help of a

complex of metrics of each stage and the system as a whole [34].
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e ML Model Evaluation: Stage 1 predictive performance is evaluated by means of the Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), Precision, Recall, F1-Score and calibration plots (reliability
curves) to determine that the risk scores are well-calibrated.

e  Optimization Model Evaluation The success of Stage 2 will be gauged by the percentage change in the estimated
daily integrated dose of PMzs and NO; of an individual in a business-as-usual situation with no mitigating
activities. The feasibility is ensured by ensuring that all 100 % of the generated plans meet all hard constraints.

This is because the calculated average disruption cost per plan in the cohort is used to proxy acceptability.

4, Results

The hybrid ML-optimization model is strictly tested with the help of extensive computational simulations. The
deployment of the two-step approach shows the effectiveness of the two-step paradigm, in which an effective machine
learning model predicts individualized exacerbation risk, and a constrained optimization engine subsequently produces
operationalized personal exposure reduction strategies. The system is run on a simulated cohort of 100 patients, more
than 90 days, with varying patient profiles (30% asthma, 17% COPD, 9% IHD) with realistic environmental, activity and
health outcome data. This model is confirmed by the ability of the model to translate predictive analytics into prescriptive,
personalized interventions to prevent cardiorespiratory exacerbations.

Figure 1 shows the environmental data upon which the study was based. The first panel shows the simulated weekly trend
of PM 2.5 concentrations and these exhibit the typical diurnal and weekly variations upon which exposure assessment is
based. The second panel shows the trend of the corresponding NO2, showing that it is correlated with the trends in traffic.
More importantly, the third panel supports the direct interaction between the degree of pollution and personal health risk,
wherein a clear positive correlation between PM 2.5 levels and the risk of exacerbation is found, which confirms the main

assumption of the intervention model.
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Fig. 1: Environmental Data Trends and Their Health Impact

The predictive performance of the assessed machine learning algorithms is depicted in figure 2. The logistic regression
model had better results with an AUC of 0.979 and an accuracy of 0.961 as compared to the random forest (AUC: 0.974)
and the ensemble technique. The resulting confusion table shows that this model has a great ability to discriminate and
the precision is 0.932 and the recall is 0.992, which is very significant since it allows low-risk individuals to go without

any personalized alerts to minimize false alarms which is a crucial prerequisite of an effective personalized alert system.
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Model Comparison Confusion Matrix (Logistic Regression)
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Fig. 2: Comparative Performance of Machine Learning Models

The customized output of the optimization of the three representative patient profiles is provided in Table 2. In both cases,
the model was able to produce action plans that were reasonable in terms of computational tolerances (0% optimality
gap). With risk scores of 0.941, 0.999, and 0.821, the asthma, COPD, and IHD patients recorded similar exposures
reduction of 39.4% with an identical number of two mitigation steps each. This proves that the model can be able to

provide recommendations depending on specific risk levels but those are practical.
Table 2: Case Study Optimization Results

Patient Profile Risk Score Actions Taken Exposure Reduction (%0) Optimality Gap (%0)
Asthma Patient 0.941 2 394 0.0
COPD Patient 0.999 2 394 0.0

IHD Patient 0.821 2 394 0.0

Figure 3 discusses the granular effect of the optimization model using three cases of the patient. Each profile has the
panels analyzing a comparison between baseline and optimized exposure at six time slots in a day and the results
demonstrate significant decreases in exposure especially during the high exposure times such as commuting and outdoor
exercise. Two specific interventions are always suggested by the optimal action plans as the main ones which are the use
of masks and the re-scheduling of activities which proves the model to be able to find the most effective combination of

actions based on the schedules and limits of individual individuals.
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Asthma Patient Profile Exposure: Baseline vs Optimized Optimal Action Plan
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Fig. 3: Detailed Analysis of Personalized Case Studies

In Figure 4, the aggregate performance measures of the entire hybrid system are conducted. The model has obtained a
mean exposure cut down of 39.4% in all the cases with 100 % viability. The analysis of the recommendations with the
most recommendations showed that wearing a mask and moving indoors was the most common intervention
recommended, and it was chosen about 67 % of the time, with route changes being the least chosen. The uniformity in

the patterns of exposure reduction in the various types of patients ascertained support the strength of the optimization
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Fig. 4: System-Wide Performance and Recommendation Patterns

Additional support of the analytical basis of the model is justified in Figure 5. The ROC curve establishes exceptional
discriminatory capability (AUC = 0.979), and the risk score distribution demonstrates that it is well calibrated on the
synthetic population. Importantly, the risk-exposure minimization association shows a highly positive correlation (R2 =
0.97), which shows that more risky persons systematically get stronger exposure reduction guidelines and, this way,

confirms the risk-adaptive reasoning behind the hybrid model.
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Fig. 5: Extended Model Validation and Risk Analysis

The outcomes of the simulation show a high performance on all the assessment parameters. ML component had the
highest predictive accuracy (AUC: 0.979, Accuracy: 0.961), and the optimization module resulted in a steady and high
exposure decrease (39.4% mean) with 100% feasibility (3/3 successful solutions). The system was highly practical in
terms of implementation with low disruption costs (mean: 0.70) and almost instantaneous computation time (less than
0.01 seconds per optimization). All these findings support the suggested framework as a viable, practical, and capable

intervention to propose in personalized environmental health.

5. Discussion

5.1. Interpretation of Key Findings

The large predictive performance of the machine learning model (AUC = 0.979) as well as the large, practical exposures
decreases (39.4% on average) produced by the optimization engine are taken to be an effective validation of the main
assumption of the hybrid framework. These findings highlight an important development of turning a risk forecast into a
risk mitigation action. Although predictive models determine at risk and when, they have a huge translational gap since
they do not provide information on what should be done. This is a valuable work because of its prescriptive analytics
aspect, which completes this cycle by producing an actual, customized plan. This becomes active, manageable risk
awareness instead of passive risk awareness, which is a paradigm shift in informative digital health to actionable digital
health.

5.2. Advancement over Existing Approaches

This model represents a major improvement in comparison to the past and present-day static Air Quality Index (AQI)
alerts and classical epidemiological researches. The proposed framework is based on dynamic and location-aware
guidance, unlike traditional, location-based AQI warnings, that provide an individual with the required guidance,
depending on their unique health profile, real-time and predicted location, and personal schedule. It goes past the
association of population to give individual-level recommendations. Moreover, it is more successful than independent
studies of predictive ML by not halting at a risk score but rather solving the best action set in a restricted decision space,
which directly answers the so what. question that usually restricts the clinical usefulness of predictive models.

5.3. Public Health and Clinical Implications

There are significant implications on the clinical practice and public health. The framework will be implemented with the

existing telehealth programs and chronic disease management measures, which will offer a new instrument in proactive
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care. It allows the patient to manage the environmental health risks by empowering them with specific, manageable
activities, such as rescheduling outdoor activity or wearing a mask during a high-pollution commute, to enable patient
agency in environmental health management. Such proactive and preventative practice can help to minimize the number
of acute exacerbations, and, thus, the number of emergency department visits, hospitalizations, and healthcare expenses,
at the same time enhancing the quality of life and control over their health that patients have.

5.4. Limitations and Strengths

This research has a number of limitations that should be considered. First of all, the validation is conducted on a highly
artificial but advanced dataset, which might not reflect the whole complexity and noise of the real-world multi-modal
data streams. The exposure component in the model is concerned with the ambient pollution, and it does not include all
the microenvironment dynamics of the indoor air quality and all occasions of personal activity. Moreover, it functions on
the hypothesis of flawless compliance of users with the recommendations generated and scalability of computation to
application to very large population in real time is to be further explored. Irrespective of these loopholes, the strengths of
the research are structural. It proposes a new interdisciplinary paradigm that has a significant impact on environmental
science, machine learning, and operations research. The two-stage architecture is quite extensively scalable in nature, and
the clear integration of user-specific constraints is a way to guarantee that the generated recommendations are not only
useful but also quite realistic, which increases their chances of being adopted into the real world by a significant margin.

5.5. Future Research Directions

The research in the future ought to follow some of the main directions to move this proof-of-concept to a practical
intervention. To prove efficacy in a real-world setting, first, there is the necessity of a pilot clinical trial, deploying the
system with a group of patients, by the use of real wearables, real environmental sensors and electronic health records.
Second, personalization of the model can be also improved with the addition of the real-time pharmacodynamic
information, e.g., life-time usage of a rescue inhaler or continuous monitoring of the heart rate variability, to develop a
more reactive biofeedback loop. Third, the process of creating and trying to test a user-friendly mobile application is
essential to researching long-term engagement, compliance, and, finally, actual health improvement. Lastly, learning how
to learn adaptively, e.g. reinforcement learning, might allow the system to learn via user feedback and past experience,

improving its recommendations with time, to achieve a long-lasting level of effectiveness.

6. Conclusion

To sum up, the research has managed to show that a hybrid ML-optimization model is a viable and effective approach to
the translation of environmental data into individualized preventative health behavior. The suggested model is effective
in overcoming the serious drawback of existing one-size-fits-all pollution warnings by providing customized, practical
suggestions that decrease estimated exposure (on average, by 39.4 %) of at-risk persons. Predictive analytics can be
combined with prescriptive optimization to provide a solid computational base of proactive environmental health
management. The next research that should be done is on validating the framework using the real-life data of wearable
sensors and electronic health records in a clinical trial environment. More so, the model can be further extended to other
adaptive learning processes including reinforced learning to optimize recommendations on the basis of user compliance
and perceived health outcomes. Exploratory research of the incorporation of indoor air quality data and add the scope of

mitigable pollutants would also make the model more comprehensive and useful in a variety of urban settings.
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