Detection of Human Cytomegalovirus Pp65 in colorectal adeno- carcinoma and villous adenoma using Immunohistochemistry (IHC) technique
Keywords:
Thi-Qar, Human Cytomegalovirus, colorectal adenocarcinoma, Immunohistochemistry (IHC)Abstract
Colorectal adenocarcinoma is the third most common cancer in men and women and is the second leading causes cancer death. Recently detected Human Cytomegalovirus (HCMV) proteins in a high proportion of human colorectal tumors. These finding raise the chance of whether persistent HCMV infection can induce oncogenic pathways that eventuate in colorectal adenocarcinoma. This study investigates whether HCMV participates in human colorectal tumorigenesis by the detection of HCMV Pp65 within epithelial cells of colorectal carcinoma using Immunohistochemistry (IHC). We obtained formalin–fixed, paraffin – embedded specimens of adenocarcinoma, villous adenoma, and normal tissues from the margins of the excision as a control. In this study, 55 specimens were classified into three groups: Adenocarcinoma, Villous adenoma, and control group, all groups have been tested by IHC to detect the presence of HCMV proteins using mouse monoclonal antibodies to an early protein (pp65). The results of IHC assay showed specific nuclear and cytoplasmic reaction of HCMV proteins within the epithelial cells of colorectal adenocarcinoma (75.75%), and villous adenoma (83.33%), in addition to that no nuclear or cytoplasmic reaction were showed in any case of control group. In view of the many cellular modulatory properties of this virus, our data justify further studies to establish whether HCMV interfere with the pathogenesis of colorectal adenocarcinoma.References
Britt J. W.; and Alford CA.(1996). Cytomegalovirus. In: Feild BN, Knipe, DM, Howley PM, eds. Feildsvirology, vol. 2, 3rd edn. philadelphia: Lippincott, Williams, and Wilkins, pp: 2493-523.
Iraqi Cancer Board ICRC (2001). Results Iraqi Cancer Registry. Ministry of Health, Baghdad. Iraq.
Jonathan P.C. and Timothy F. K. (2004). HCMV infection: Modula-ting the cell cycle and cell death. Int. Rev. Immunol.; 23:113-139.
Naish S.; et al. (1989). Immuno-histochemical staining materials, Carbina, California, DAKO corporation, pp: 1-37.
Braphauer G.; and Adems L. (1994). Immunohistochemical antigen detected in tissues. Utrika; Mikel ed. Advanced laboratory methods in histology and pathology). Armed forces institution of pathology, Washington DC. PP: 1-40.
Eissa S.;and Shomann S. (1998).Tumor markers. 2nd ed. Chapman and Hall, London pp: 57-58.
Vailhe B; Dietl J.; Kapp M.; Toth B.; and Arek P.(1999).Increased blood vessel density in decidua parietalis is associated with spontaneous human first trimester abortion. Hum. Reprod.; 14 (6): 1628-1634
Albrecht T.; Nachtigal M.; St. Jeor S. C. and Rapp F.(1976).Induction of cellular DNA synthesis and increased mitotic activity in Syrian hamster embryo cells abortively infected with human cytomegalo-virus, J. Gen Virol.; 30: 167-177.
Bresnahan, W.A.; Boldogh, I.; Thompson, E.A.; and Albrecht, T. (1996).Human cytomegalovirus inhibits cellular DNA synthesis and arrests productively infected cells in late G1. Virology; 224: 150-160.
Dittmer, D.; and Mocarski, E.S. (1997).Human cytomegalovirus infection inhibits G1/S transition. J. Virol; 71: 1629- 1634
Furukawa, T.; Fioretti A.; and Plotkin S. (1973).Growth characteristic of cytomegalovirus in human fibroblasts with demonstration of protein synthesis early in viral replication. J.Virol; 11: 991-997.
Somogyi, T.; Michelson S.; and Masse M. J. (1990). Genomic location of ahuman cytomegalo-virus protein with protein kinase activity (PK68). Virology; 174: 276–285.
Mausuo L.U.; and Thomas S. (1996). HCMV infection inhibits cell cycle progression at multiple points including the transition from G1 to S phase. J. Virol.; 70: 8850-8857.
Doniger J.; Muralidhar S.; and Rosenthal L J. (1999). Human cytomegalovirus and human herpesvirus 6 genes that transform and transactivate .Clin. Microbiol. Rev.; 12:367-382.
Kalejta R F.; and Shang T. (2002). Manipulation of cell cycle by human cytomegalovirus. Front. Biosci.; 7: d295- d306.
Landolfo S.; Gariglio M.; Gribaudo G., etal. (2003).The human cytomegalovirus. Pharmacol. Ther; 98:269-297.
Castillo J P.; and Kowalik TF. (2004).HCMV infection: modulating the cell cycle and cell death. Int. Rev. Immunol; 23:113-139.
Jault F M; Jault J. M.; Ruchti F; Fortunato E A; Clark C.; Corbei J.; Richman D D.; and Spector D H. (1995). Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53 leading to cell cycle arrest. J. Virol.; 69: 6697-6704.
Spaete, R. R.; Gehrz R. C.; and Landini M. P. (1994). Human cytomegalovirus structural proteins. J. Gen. Virol.; 75: 3287–3308.
Gibson W. (1983). Protein counterparts of human and simian cytomegaloviruses. Virology; 128: 391–406.
Clark B.R.; Zaia J.A.; Balce- Directo L.; and Ting Y. P. (1984).Isolation and partial chemical characterization of a 64,000-dalton glycoprotein of humancytomegalovirus. J. Virol.; 49: 279–282.
Landini, M. P.; Re M.C.; Mirolo G.; Baldassarri B.; and La-Placa M. (1985).Human immune response to cytomegalovirus structural polypeptides studied by immunoblotting. J. Med. Virol.; 17:303–311.
Somogyi, T.; Michelson S.; and Masse M. J. (1990). Genomic location of ahuman cyto-megalovirus protein with protein kinase activity (PK68). Virology; 174: 276–285
Geballe A. P.; Leach F. S.; and Mocarski E. S. (1986). Regulation of cytomegalo-viruslate gene expression: gamma genes are controlled by posttranscriptional events. J.Virol.; 57:864–874.
Schmolke S.; Kern HF.; Drescher P.; Jahn G.; and Plachter B. (1995).The dominant phosphor-protein pp65 (UL83) of Human cytomegalovirus is dispensable for growth in cell culture .J.Virol.; 69: 5959-5968.
Britt J. W.; and Auger D. (1989). Human cytomegalovirus virion associated protein with kinase activity, J. Virol.; 59: 185-188.