Comparative Analysis of Azithromycin Resistance in Gram Positive Bacteria Pre- and Post- COVID-19 Pandemic
Keywords:
COVID-19, drug resistance, Azithromycin, AntibacterialAbstract
Background: On the first day of the SARS-CoV2 pandemic, azithromycin (AZM) was one ofthe most commonly utilised drugs, even though there is no scientific evidence to support its
usage in treating COVID-19. Because it encourages the establishment of drug-resistant bacterial
strains, which makes it more tough to successfully treat a range of bacterial infections, its free
egress has generated worries about public health. Perfect for learning how to combat COVID-19
infections using antibiotics that are effective against azole-group fever (AZM)-resistant bacteria.
Methods: In order to mimic cases of tonsillitis, pharynx infections, or respiratory tract
infections, a control group consisting of 25 samples were used from healthy individuals as a
control group and 37 bacterial isolates was maintained apart from cases that had previously
contracted the corona virus. Ten scholarly articles were completely reviewed. All extra criteria
were met by studies published between 2015 and 2023 that dealt with AZM resistance in bacteria
during the treatment of bacteriosis or the fight against COVID-19.
Results: indicated that out of 25 control samples, 13 (or 52% of the total) responded positively
to AZM whereas 12 (or 48% of the total) were resistant. In addition, 26 (70.27%) of the bacteria
that were isolated were completely resistant to the antibiotic, whereas 11 (29.72%) of the isolates
were found to be susceptible.
Conclusions: Implicit bacterial resistance to AZM is directly correlated with the careless use
of this medication. Because AZM, an antibiotic drug, is widely used to treat a variety of bacterial
diseases, the emergence of resistance bacteria poses a significant threat to public health.
References
Park, S. E. (2020). Epidemiology, virology, and clinical features of severe acute
respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clinical and
experimental pediatrics, 63(4), 119. doi: 10.3345/cep.2020.00493
Yüce, M., Filiztekin, E., & Özkaya, K. G. (2021). COVID-19 diagnosis—A review of
current methods. Biosensors doi.org/10.1016/j.bios.2020.112752
and Bioelectronics, 172, 112752. Sultana, J., Cutroneo, P. M., Crisafulli, S., Puglisi, G., Caramori, G., & Trifirò, G.
(2020). Azithromycin in COVID-19 patients: pharmacological mechanism, clinical evidence and
prescribing guidelines. Drug safety, 43, 691-698. doi.org/10.1007/s40264-020-00976-7
Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature reviews microbiology, 13(1), 42-51. doi.org/10.1038/nrmicro3380
Ranjbar, R., & Alam, M. (2024). Antimicrobial Resistance Collaborators (2022).
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. EvidenceBased Nursing, 27(1), 16-16. doi.org/10.1136/ebnurs-2022-103540
Wahab, S., Ahmad, M. F., Hussain, A., Usmani, S., Shoaib, A., & Ahmad, W. (2021).
Effectiveness of Azithromycin as add-on Therapy in COVID-19 Management. Mini Reviews in
Medicinal Chemistry, 21(19), 2860-2873. doi.org/10.2174/1389557521666210401093948.
Bakheit, A. H., Al-Hadiya, B. M., & Abd-Elgalil, A. A. (2014). Azithromycin. Profiles of drug substances, excipients doi.org/10.1016/B978-0-12-800173-8.00001-5
and related methodology, 39, 1-40. Heidary, M., Ebrahimi Samangani, A., Kargari, A., Kiani Nejad, A., Yashmi, I., Motahar, M., ... & Khoshnood, S. (2022). Mechanism of action, resistance, synergism, and clinical implications of azithromycin. Journal of clinical laboratory analysis, 36(6), e24427. doi.org/10.1002/jcla.24427
Chiou, C. S., Hong, Y. P., Wang, Y. W., Chen, B. H., Teng, R. H., Song, H. Y., &
Liao, Y. S. (2023). Antimicrobial resistance and mechanisms of azithromycin resistance in
nontyphoidal Salmonella isolates in Taiwan, 2017 to 2018. Microbiology spectrum, 11(1),
e03364-22. doi: 10.1128/spectrum.03364-22. Epub 2023 Jan 23.
Majumder, M. A. A., Rahman, S., Cohall, D., Bharatha, A., Singh, K., Haque, M., & Gittens-St Hilaire, M. (2020). Antimicrobial stewardship: fighting antimicrobial resistance and protecting global public health. Infection and drug resistance, 4713-4738. doi: 10.2147/IDR.S290835
Parnham, M. J., Haber, V. E., Giamarellos-Bourboulis, E. J., Perletti, G., Verleden, G. M., & Vos, R. (2014). Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacology 10.1016/j.pharmthera.2014.03.003.
& therapeutics, 143(2),
-245. doi: Unemo, M., Golparian, D., & Eyre, D. W. (2019). Antimicrobial resistance in Neisseria gonorrhoeae and treatment of gonorrhea. Neisseria gonorrhoeae: methods and protocols, 37-58. doi: 10.1007/978-1-4939-9496-0_3.
Doan, T., Worden, L., Hinterwirth, A., Arzika, A. M., Maliki, R., Abdou, A., ... &
Lietman, T. M. (2020). Macrolide and nonmacrolide resistance with mass azithromycin
distribution.
New England Journal of Medicine, 383(20), 1941-1950. doi:
1056/NEJMoa2002606.
Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C.
G., ... & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug
resistant bacteria: an international expert proposal for interim standard definitions for acquired
resistance. Clinical microbiology and infection, 18(3), 268-281. doi: 10.1111/j.1469
2011.03570.x.
Kuleshova, S. I., Protsak, S. A., Lisunova, S. A., & Romanyuk, G. Y. (2021). Stability
of ready-to-use and laboratory-prepared culture media. Regulatory Research and Medicine
Evaluation, 11(2), 130-134. doi.org/10.30895/1991-2919-2021-11-2-130-134
Tibbits, G., Mohamed, A., Call, D. R., & Beyenal, H. (2022). Rapid differentiation of
antibiotic-susceptible and-resistant bacteria through mediated extracellular electron transfer.
Biosensors and Bioelectronics, 197, 113754. doi: 10.1016/j.bios.2021.113754.
Huemer, M., Mairpady Shambat, S., Brugger, S. D., & Zinkernagel, A. S. (2020).
Antibiotic resistance and persistence—Implications for human health and treatment perspectives.
EMBO reports, 21(12), e51034. doi: 10.15252/embr.202051034.
Larsson, D. G., & Flach, C. F. (2022). Antibiotic resistance in the environment. Nature
Reviews Microbiology, 20(5), 257-269. doi: 10.1038/s41579-021-00649-x.
Miranda, C., Silva, V., Capita, R., Alonso-Calleja, C., Igrejas, G., & Poeta, P. (2020).
Implications of antibiotics use during the COVID-19 pandemic: present and future. Journal of
Antimicrobial Chemotherapy, 75(12), 3413-3416. doi: 10.1093/jac/dkaa350.
Rufino, J. P., Sousa, L. G. V., Rodrigues, A. E. L., Falcão, A. L. S., de Melo Lima, I.
C., de Miranda Cavalcanti, L. A., ... & de Oliveira Filho, J. W. G. (2022). Bacterial resistance to
azithromycin: causes, effects, and the fight against COVID-19. Research, Society and
Development, 11(6), e27711629198-e27711629198. doi.org/10.33448/rsd-v11i6.29198
Crespi, E., Pereyra, A. M., Puigdevall, T., Rumi, M. V., Testorelli, M. F., Caggiano,
N., ... & Srednik, M. E. (2022). Antimicrobial resistance studies in staphylococci and
streptococci isolated from cows with mastitis in Argentina. Journal of Veterinary Science, 23(6).
doi: 10.4142/jvs.21062.
Mupfunya, C. R., Qekwana, D. N., & Naidoo, V. (2021). Antimicrobial use practices
and resistance in indicator bacteria in communal cattle in the Mnisi community, Mpumalanga,
South Africa. Veterinary Medicine and Science, 7(1), 112-121. doi: 10.1002/vms3.334.
Septimus, E. J. (2018). Antimicrobial resistance: an antimicrobial/diagnostic
stewardship and infection prevention approach. Medical Clinics, 102(5), 819-829. doi:
1016/j.mcna.2018.04.005.
Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial resistance in
bacteria: mechanisms, evolution, and persistence. Journal of molecular evolution, 88(1), 26-40.
doi: 10.1007/s00239-019-09914-3.
Retallack, H., Di Lullo, E., Arias, C., Knopp, K. A., Laurie, M. T., Sandoval-Espinosa,
C., ... & DeRisi, J. L. (2016). Zika virus cell tropism in the developing human brain and
inhibition by azithromycin. Proceedings of the National Academy of Sciences, 113(50), 14408
doi: 10.1073/pnas.1618029113.
Singh, N., Tang, Y., Zhang, Z., & Zheng, C. (2020). COVID-19 waste management:
Effective and successful measures in Wuhan, China. Resources, conservation, and recycling,
, 105071. doi: 10.1016/j.resconrec.2020.105071.
Sulayyim, H. J. A., Ismail, R., Hamid, A. A., & Ghafar, N. A. (2022). Antibiotic
resistance during COVID-19: a systematic review. International journal of environmental
research and public health, 19(19), 11931. doi: 10.3390/ijerph191911931.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 University of Thi-Qar Journal Of Medicine
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.