Comparative Analysis of Azithromycin Resistance in Gram Positive Bacteria Pre- and Post- COVID-19 Pandemic

Authors

  • Hajir Qasim Razaq Alhusaynat Thi-Qar University / College Of Medicine

Keywords:

COVID-19, drug resistance, Azithromycin, Antibacterial

Abstract

Background: On the first day of the SARS-CoV2 pandemic, azithromycin (AZM) was one of
the most commonly utilised drugs, even though there is no scientific evidence to support its
usage in treating COVID-19. Because it encourages the establishment of drug-resistant bacterial
strains, which makes it more tough to successfully treat a range of bacterial infections, its free
egress has generated worries about public health. Perfect for learning how to combat COVID-19
infections using antibiotics that are effective against azole-group fever (AZM)-resistant bacteria.
Methods: In order to mimic cases of tonsillitis, pharynx infections, or respiratory tract
infections, a control group consisting of 25 samples were used from healthy individuals as a
control group and 37 bacterial isolates was maintained apart from cases that had previously
contracted the corona virus. Ten scholarly articles were completely reviewed. All extra criteria
were met by studies published between 2015 and 2023 that dealt with AZM resistance in bacteria
during the treatment of bacteriosis or the fight against COVID-19.
Results: indicated that out of 25 control samples, 13 (or 52% of the total) responded positively
to AZM whereas 12 (or 48% of the total) were resistant. In addition, 26 (70.27%) of the bacteria
that were isolated were completely resistant to the antibiotic, whereas 11 (29.72%) of the isolates
were found to be susceptible.
Conclusions: Implicit bacterial resistance to AZM is directly correlated with the careless use
of this medication. Because AZM, an antibiotic drug, is widely used to treat a variety of bacterial
diseases, the emergence of resistance bacteria poses a significant threat to public health.

References

Park, S. E. (2020). Epidemiology, virology, and clinical features of severe acute

respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clinical and

experimental pediatrics, 63(4), 119. doi: 10.3345/cep.2020.00493

Yüce, M., Filiztekin, E., & Özkaya, K. G. (2021). COVID-19 diagnosis—A review of

current methods. Biosensors doi.org/10.1016/j.bios.2020.112752

and Bioelectronics, 172, 112752. Sultana, J., Cutroneo, P. M., Crisafulli, S., Puglisi, G., Caramori, G., & Trifirò, G.

(2020). Azithromycin in COVID-19 patients: pharmacological mechanism, clinical evidence and

prescribing guidelines. Drug safety, 43, 691-698. doi.org/10.1007/s40264-020-00976-7

Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature reviews microbiology, 13(1), 42-51. doi.org/10.1038/nrmicro3380

Ranjbar, R., & Alam, M. (2024). Antimicrobial Resistance Collaborators (2022).

Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. EvidenceBased Nursing, 27(1), 16-16. doi.org/10.1136/ebnurs-2022-103540

Wahab, S., Ahmad, M. F., Hussain, A., Usmani, S., Shoaib, A., & Ahmad, W. (2021).

Effectiveness of Azithromycin as add-on Therapy in COVID-19 Management. Mini Reviews in

Medicinal Chemistry, 21(19), 2860-2873. doi.org/10.2174/1389557521666210401093948.

Bakheit, A. H., Al-Hadiya, B. M., & Abd-Elgalil, A. A. (2014). Azithromycin. Profiles of drug substances, excipients doi.org/10.1016/B978-0-12-800173-8.00001-5

and related methodology, 39, 1-40. Heidary, M., Ebrahimi Samangani, A., Kargari, A., Kiani Nejad, A., Yashmi, I., Motahar, M., ... & Khoshnood, S. (2022). Mechanism of action, resistance, synergism, and clinical implications of azithromycin. Journal of clinical laboratory analysis, 36(6), e24427. doi.org/10.1002/jcla.24427

Chiou, C. S., Hong, Y. P., Wang, Y. W., Chen, B. H., Teng, R. H., Song, H. Y., &

Liao, Y. S. (2023). Antimicrobial resistance and mechanisms of azithromycin resistance in

nontyphoidal Salmonella isolates in Taiwan, 2017 to 2018. Microbiology spectrum, 11(1),

e03364-22. doi: 10.1128/spectrum.03364-22. Epub 2023 Jan 23.

Majumder, M. A. A., Rahman, S., Cohall, D., Bharatha, A., Singh, K., Haque, M., & Gittens-St Hilaire, M. (2020). Antimicrobial stewardship: fighting antimicrobial resistance and protecting global public health. Infection and drug resistance, 4713-4738. doi: 10.2147/IDR.S290835

Parnham, M. J., Haber, V. E., Giamarellos-Bourboulis, E. J., Perletti, G., Verleden, G. M., & Vos, R. (2014). Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacology 10.1016/j.pharmthera.2014.03.003.

& therapeutics, 143(2),

-245. doi: Unemo, M., Golparian, D., & Eyre, D. W. (2019). Antimicrobial resistance in Neisseria gonorrhoeae and treatment of gonorrhea. Neisseria gonorrhoeae: methods and protocols, 37-58. doi: 10.1007/978-1-4939-9496-0_3.

Doan, T., Worden, L., Hinterwirth, A., Arzika, A. M., Maliki, R., Abdou, A., ... &

Lietman, T. M. (2020). Macrolide and nonmacrolide resistance with mass azithromycin

distribution.

New England Journal of Medicine, 383(20), 1941-1950. doi:

1056/NEJMoa2002606.

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C.

G., ... & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug

resistant bacteria: an international expert proposal for interim standard definitions for acquired

resistance. Clinical microbiology and infection, 18(3), 268-281. doi: 10.1111/j.1469

2011.03570.x.

Kuleshova, S. I., Protsak, S. A., Lisunova, S. A., & Romanyuk, G. Y. (2021). Stability

of ready-to-use and laboratory-prepared culture media. Regulatory Research and Medicine

Evaluation, 11(2), 130-134. doi.org/10.30895/1991-2919-2021-11-2-130-134

Tibbits, G., Mohamed, A., Call, D. R., & Beyenal, H. (2022). Rapid differentiation of

antibiotic-susceptible and-resistant bacteria through mediated extracellular electron transfer.

Biosensors and Bioelectronics, 197, 113754. doi: 10.1016/j.bios.2021.113754.

Huemer, M., Mairpady Shambat, S., Brugger, S. D., & Zinkernagel, A. S. (2020).

Antibiotic resistance and persistence—Implications for human health and treatment perspectives.

EMBO reports, 21(12), e51034. doi: 10.15252/embr.202051034.

Larsson, D. G., & Flach, C. F. (2022). Antibiotic resistance in the environment. Nature

Reviews Microbiology, 20(5), 257-269. doi: 10.1038/s41579-021-00649-x.

Miranda, C., Silva, V., Capita, R., Alonso-Calleja, C., Igrejas, G., & Poeta, P. (2020).

Implications of antibiotics use during the COVID-19 pandemic: present and future. Journal of

Antimicrobial Chemotherapy, 75(12), 3413-3416. doi: 10.1093/jac/dkaa350.

Rufino, J. P., Sousa, L. G. V., Rodrigues, A. E. L., Falcão, A. L. S., de Melo Lima, I.

C., de Miranda Cavalcanti, L. A., ... & de Oliveira Filho, J. W. G. (2022). Bacterial resistance to

azithromycin: causes, effects, and the fight against COVID-19. Research, Society and

Development, 11(6), e27711629198-e27711629198. doi.org/10.33448/rsd-v11i6.29198

Crespi, E., Pereyra, A. M., Puigdevall, T., Rumi, M. V., Testorelli, M. F., Caggiano,

N., ... & Srednik, M. E. (2022). Antimicrobial resistance studies in staphylococci and

streptococci isolated from cows with mastitis in Argentina. Journal of Veterinary Science, 23(6).

doi: 10.4142/jvs.21062.

Mupfunya, C. R., Qekwana, D. N., & Naidoo, V. (2021). Antimicrobial use practices

and resistance in indicator bacteria in communal cattle in the Mnisi community, Mpumalanga,

South Africa. Veterinary Medicine and Science, 7(1), 112-121. doi: 10.1002/vms3.334.

Septimus, E. J. (2018). Antimicrobial resistance: an antimicrobial/diagnostic

stewardship and infection prevention approach. Medical Clinics, 102(5), 819-829. doi:

1016/j.mcna.2018.04.005.

Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial resistance in

bacteria: mechanisms, evolution, and persistence. Journal of molecular evolution, 88(1), 26-40.

doi: 10.1007/s00239-019-09914-3.

Retallack, H., Di Lullo, E., Arias, C., Knopp, K. A., Laurie, M. T., Sandoval-Espinosa,

C., ... & DeRisi, J. L. (2016). Zika virus cell tropism in the developing human brain and

inhibition by azithromycin. Proceedings of the National Academy of Sciences, 113(50), 14408

doi: 10.1073/pnas.1618029113.

Singh, N., Tang, Y., Zhang, Z., & Zheng, C. (2020). COVID-19 waste management:

Effective and successful measures in Wuhan, China. Resources, conservation, and recycling,

, 105071. doi: 10.1016/j.resconrec.2020.105071.

Sulayyim, H. J. A., Ismail, R., Hamid, A. A., & Ghafar, N. A. (2022). Antibiotic

resistance during COVID-19: a systematic review. International journal of environmental

research and public health, 19(19), 11931. doi: 10.3390/ijerph191911931.

Downloads

Published

2024-11-11

Issue

Section

ARTICLE