Prevalence and Risk Factors of Urinary Tract Infections Caused by Multidrug-Resistant Enterobacteriaceae in Nasiriyah, Iraq

Authors

  • Hajir Qasim Razaq Alhusaynat Thi-Qar University-College Of Medicine
  • Hind Ali Nasser Microbiology Department / Medicine College / Thi-Qar university

Keywords:

Urinary tract infections, Escherichea coli, Klebsiella pneumonia, Pseudomonas aeruginosa, drug resistance

Abstract

Background: Any area of the urinary system—the kidneys, ureters, bladder, or urethra—is
susceptible to infection when a UTI occurs. The urethra and bladder are the most common sites
of infection in the lower urinary tract. When microorganisms including bacteria, viruses, fungi,
and parasites evolve to resist antibiotics, a phenomenon known as antimicrobial resistance
(AMR) happens. This makes infections more difficult to cure and raises the likelihood of disease
transmission, serious illness, and death. The researchers in this study set out to quantify the
prevalence of urinary tract infections (UTIs) in Iraqi residents and to determine which bacterial
strains were resistant to antibiotics.
Methods: The study included 100 patients who were classified into 75 that were diagnosed
with UTI patients, their ages ranged between (16) to (67) years, (45) females and (30) males. In
addition to 25 uninfected individuals as controls, their ages ranged between (15) to (59) years,
(15) females and (10) males. All participants in the study underwent identical laboratory tests to
diagnose UTIs, identify the types of bacterial isolates, and determine their antibiotic resistance
patterns
Results: The result of the present study shows that E.coli, Klebsiella pneumonia and
pseudomonas aeruginosa were the most common types of UTI-associated bacteria with the
percentage of 44.71%, 38.57% and 15.71% respectively.
Conclusion: pseudomonas aeruginosa had been developed its resistance to several antibiotics
and had great predisposition to be MDR.

References

Hooton, T. M. (2012). Uncomplicated urinary tract infection. New England Journal of

Medicine, 366(11), 1028-1037. doi: 10.1056/NEJMcp1104429.

Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract

infections: epidemiology, mechanisms of infection and treatment options. Nature reviews

microbiology, 13(5), 269-284. doi: 10.1038/nrmicro3432.

Khawcharoenporn, T., Vasoo, S., & Singh, K. (2013). Urinary tract infections due to

multidrug‐resistant Enterobacteriaceae: prevalence and risk factors in a Chicago emergency

department. Emergency medicine international, 2013(1), 258517. doi: 10.1155/2013/258517.

Finucane, T. E. (2017). “Urinary tract infection”—requiem for a heavyweight. Journal of

the American Geriatrics Society, 65(8), 1650-1655. doi: 10.1111/jgs.14907.

Morello, W., La Scola, C., Alberici, I., & Montini, G. (2016). Acute pyelonephritis in

children. Pediatric Nephrology, 31, 1253-1265. doi: 10.1007/s00467-015-3168-5.

Fouts, D. E., Pieper, R., Szpakowski, S., Pohl, H., Knoblach, S., Suh, M. J., ... & Groah,

S. L. (2012). Integrated next-generation sequencing of 16S rDNA and metaproteomics

differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder

associated with spinal cord injury. Journal of translational medicine, 10, 1-17. doi:

1186/1479-5876-10-174.

Schlager, T. A. (2016). Urinary tract infections in infants and children. Microbiology

spectrum, 4(5), 10-1128. doi: 10.1128/microbiolspec.UTI-0022-2016.

Desai, D. J., Gilbert, B., & McBride, C. A. (2016). Paediatric urinary tract infections:

Diagnosis and treatment. Australian family physician, 45(8), 558-564.

Östholm-Balkhed, Å., Tärnberg, M., Nilsson, M., Nilsson, L. E., Hanberger, H.,

Hällgren, A., & Travel Study Group of Southeast Sweden. (2013). Travel-associated faecal

colonization with ESBL-producing Enterobacteriaceae: incidence and risk factors. Journal of

Antimicrobial Chemotherapy, 68(9), 2144-2153. doi: 10.1093/jac/dkt167.

Sekar, R., Srivani, S., Amudhan, M., & Mythreyee, M. (2016). Carbapenem resistance in

a rural part of southern India: Escherichia coli: versus: Klebsiella: spp. Indian Journal of Medical

Research, 144(5), 781-783. doi: 10.4103/ijmr.IJMR_1035_15.

Lee, C. R., Cho, I. H., Jeong, B. C., & Lee, S. H. (2013). Strategies to minimize antibiotic

resistance. International journal of environmental research and public health, 10(9), 4274-4305.

doi: 10.3390/ijerph10094274.

Graif, N., Abozaid, S., & Peretz, A. (2020). Trends in distribution and antibiotic

resistance of bacteria isolated from urine cultures of children in Northern Israel between 2010

and 2017. Microbial Drug Resistance, 26(11), 1342-1349. doi: 10.1089/mdr.2020.0111.

Mirsoleymani, S. R., Salimi, M., Shareghi Brojeni, M., Ranjbar, M., & Mehtarpoor, M.

(2014). Bacterial Pathogens and Antimicrobial Resistance Patterns in Pediatric Urinary Tract

Infections: A Four‐Year Surveillance Study (2009–2012). International journal of pediatrics,

(1), 126142. doi: 10.1155/2014/126142.

Lee, H. Y., & Khosla, C. (2007). Bioassay-guided evolution of glycosylated macrolide

antibiotics in Escherichia coli. PLoS biology, 5(2), e45. doi: 10.1371/journal.pbio.0050045.

Mandell, L. A., Marrie, T. J., Grossman, R. F., Chow, A. W., Hyland, R. H., & Canadian

Community-Acquired Pneumonia Working Group. (2000). Canadian guidelines for the initial

management of community-acquired pneumonia: an evidence-based update by the Canadian

Infectious Diseases Society and the Canadian Thoracic Society. Clinical Infectious Diseases,

(2), 383-421. doi: 10.1155/2000/457147.

Merkier, A. K., Rodríguez, M. C., Togneri, A., Brengi, S., Osuna, C., Pichel, M., ... &

Centrón, D. (2013). Outbreak of a cluster with epidemic behavior due to Serratia marcescens

after colistin administration in a hospital setting. Journal of clinical microbiology, 51(7), 2295

doi: 10.1128/JCM.03280-12

Mielko, K. A., Jabłoński, S. J., Milczewska, J., Sands, D., Łukaszewicz, M., & Młynarz,

P. (2019). Metabolomic studies of Pseudomonas aeruginosa. World Journal of Microbiology and

Biotechnology, 35, 1-11. doi: 10.1007/s11274-019-2739-1.

Tingpej, P., Smith, L., Rose, B., Zhu, H., Conibear, T., Al Nassafi, K., ... & Harbour, C.

(2007). Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains

isolated from lungs of adults with cystic fibrosis. Journal of clinical microbiology, 45(6), 1697

doi: 10.1128/JCM.02364-06.

Foxman, B. (2014). Urinary tract infection syndromes: occurrence, recurrence,

bacteriology, risk factors, and disease burden. Infectious Disease Clinics, 28(1), 1-13. doi:

1016/j.idc.2013.09.003.

Hsueh, P. R., Hoban, D. J., Carmeli, Y., Chen, S. Y., Desikan, S., Alejandria, M., ... &

Binh, T. Q. (2011). Consensus review of the epidemiology and appropriate antimicrobial therapy

of complicated urinary tract infections in Asia-Pacific region. Journal of infection, 63(2), 114

doi: 10.1016/j.jinf.2011.05.015.

A‘t Hoen, L., Bogaert, G., Radmayr, C., Dogan, H. S., Nijman, R. J., Quaedackers, J., ...

& Stein, R. (2021). Update of the EAU/ESPU guidelines on urinary tract infections in children.

Journal of pediatric urology, 17(2), 200-207. doi: 10.1016/j.jpurol.2021.01.037.

Esposito, S., Biasucci, G., Pasini, A., Predieri, B., Vergine, G., Crisafi, A., ... & Iughetti,

L. (2022). Antibiotic resistance in paediatric febrile urinary tract infections. Journal of global

antimicrobial resistance, 29, 499-506. doi: 10.1016/j.jgar.2021.11.003.

Boucher, H. W., & Corey, G. R. (2008). Epidemiology of methicillin-resistant

Staphylococcus aureus. Clinical infectious diseases, 46(Supplement_5), S344-S349. doi:

1086/533590.

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C.

G., ... & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug

resistant bacteria: an international expert proposal for interim standard definitions for acquired

resistance. Clinical microbiology and infection, 18(3), 268-281. doi: 10.1111/j.1469

2011.03570.x.

Zavodnick, J., Harley, C., Zabriskie, K., & Brahmbhatt, Y. (2020). Effect of a female

external urinary catheter on incidence of catheter-associated urinary tract infection. Cureus,

(10). doi: 10.7759/cureus.11113.

Alliance for the Prudent Use of Antibiotics. (2016). General background: about antibiotic

resistance. Tufts University School of Medicine, 136.

Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., ... &

Tasak, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic

analysis. The lancet, 399(10325), 629-655. doi: 10.1016/S0140-6736(21)02724-0.

Aghamohammad, S., Badmasti, F., Solgi, H., Aminzadeh, Z., Khodabandelo, Z., &

Shahcheraghi, F. (2020). First report of extended-spectrum betalactamase-producing Klebsiella

pneumoniae among fecal carriage in Iran: high diversity of clonal relatedness and virulence

factor profiles. Microbial Drug Resistance, 26(3), 261-269. doi: 10.1089/mdr.2018.0181.

Degtiar, N. V., Litovchenko, P. P., Znamenskiĭ, V. A., Abu-el-Khava, M. I., &

Nazarchuk, L. V. (1985). Identification of Pseudomonas and other similar gram-negative non

glucose-fermenting bacteria using a minimal number of tests. Laboratornoe Delo, (5), 311-314.

doi: 10.1128/am.15.3.661-664.1967.

Diggle, S. P., & Whiteley, M. (2020). Microbe Profile: Pseudomonas aeruginosa:

opportunistic pathogen and lab rat. Microbiology, 166(1), 30-33. doi: 10.1099/mic.0.000860.

Hu, F., Zhu, D., Wang, F., & Wang, M. (2018). Current status and trends of antibacterial

resistance in China. Clinical Infectious Diseases, 67(suppl_2), S128-S134. doi:

1093/cid/ciy657.

Ahmed, I., Rabbi, M. B., & Sultana, S. (2019). Antibiotic resistance in Bangladesh: A

systematic review. International Journal of Infectious Diseases, 80, 54-61. doi:

1016/j.ijid.2018.12.017.

Effah, C. Y., Sun, T., Liu, S., & Wu, Y. (2020). Klebsiella pneumoniae: an increasing

threat to public health. Annals of clinical microbiology and antimicrobials, 19, 1-9. doi:

1186/s12941-019-0343-8.

Subedi, D., Vijay, A. K., & Willcox, M. (2018). Overview of mechanisms of antibiotic

resistance in Pseudomonas aeruginosa: an ocular perspective. Clinical and Experimental

Optometry, 101(2), 162-171. doi: 10.1111/cxo.12621.

Downloads

Published

2024-11-13

Issue

Section

ARTICLE