Prevalence and Risk Factors of Urinary Tract Infections Caused by Multidrug-Resistant Enterobacteriaceae in Nasiriyah, Iraq
Keywords:
Urinary tract infections, Escherichea coli, Klebsiella pneumonia, Pseudomonas aeruginosa, drug resistanceAbstract
Background: Any area of the urinary system—the kidneys, ureters, bladder, or urethra—issusceptible to infection when a UTI occurs. The urethra and bladder are the most common sites
of infection in the lower urinary tract. When microorganisms including bacteria, viruses, fungi,
and parasites evolve to resist antibiotics, a phenomenon known as antimicrobial resistance
(AMR) happens. This makes infections more difficult to cure and raises the likelihood of disease
transmission, serious illness, and death. The researchers in this study set out to quantify the
prevalence of urinary tract infections (UTIs) in Iraqi residents and to determine which bacterial
strains were resistant to antibiotics.
Methods: The study included 100 patients who were classified into 75 that were diagnosed
with UTI patients, their ages ranged between (16) to (67) years, (45) females and (30) males. In
addition to 25 uninfected individuals as controls, their ages ranged between (15) to (59) years,
(15) females and (10) males. All participants in the study underwent identical laboratory tests to
diagnose UTIs, identify the types of bacterial isolates, and determine their antibiotic resistance
patterns
Results: The result of the present study shows that E.coli, Klebsiella pneumonia and
pseudomonas aeruginosa were the most common types of UTI-associated bacteria with the
percentage of 44.71%, 38.57% and 15.71% respectively.
Conclusion: pseudomonas aeruginosa had been developed its resistance to several antibiotics
and had great predisposition to be MDR.
References
Hooton, T. M. (2012). Uncomplicated urinary tract infection. New England Journal of
Medicine, 366(11), 1028-1037. doi: 10.1056/NEJMcp1104429.
Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract
infections: epidemiology, mechanisms of infection and treatment options. Nature reviews
microbiology, 13(5), 269-284. doi: 10.1038/nrmicro3432.
Khawcharoenporn, T., Vasoo, S., & Singh, K. (2013). Urinary tract infections due to
multidrug‐resistant Enterobacteriaceae: prevalence and risk factors in a Chicago emergency
department. Emergency medicine international, 2013(1), 258517. doi: 10.1155/2013/258517.
Finucane, T. E. (2017). “Urinary tract infection”—requiem for a heavyweight. Journal of
the American Geriatrics Society, 65(8), 1650-1655. doi: 10.1111/jgs.14907.
Morello, W., La Scola, C., Alberici, I., & Montini, G. (2016). Acute pyelonephritis in
children. Pediatric Nephrology, 31, 1253-1265. doi: 10.1007/s00467-015-3168-5.
Fouts, D. E., Pieper, R., Szpakowski, S., Pohl, H., Knoblach, S., Suh, M. J., ... & Groah,
S. L. (2012). Integrated next-generation sequencing of 16S rDNA and metaproteomics
differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder
associated with spinal cord injury. Journal of translational medicine, 10, 1-17. doi:
1186/1479-5876-10-174.
Schlager, T. A. (2016). Urinary tract infections in infants and children. Microbiology
spectrum, 4(5), 10-1128. doi: 10.1128/microbiolspec.UTI-0022-2016.
Desai, D. J., Gilbert, B., & McBride, C. A. (2016). Paediatric urinary tract infections:
Diagnosis and treatment. Australian family physician, 45(8), 558-564.
Östholm-Balkhed, Å., Tärnberg, M., Nilsson, M., Nilsson, L. E., Hanberger, H.,
Hällgren, A., & Travel Study Group of Southeast Sweden. (2013). Travel-associated faecal
colonization with ESBL-producing Enterobacteriaceae: incidence and risk factors. Journal of
Antimicrobial Chemotherapy, 68(9), 2144-2153. doi: 10.1093/jac/dkt167.
Sekar, R., Srivani, S., Amudhan, M., & Mythreyee, M. (2016). Carbapenem resistance in
a rural part of southern India: Escherichia coli: versus: Klebsiella: spp. Indian Journal of Medical
Research, 144(5), 781-783. doi: 10.4103/ijmr.IJMR_1035_15.
Lee, C. R., Cho, I. H., Jeong, B. C., & Lee, S. H. (2013). Strategies to minimize antibiotic
resistance. International journal of environmental research and public health, 10(9), 4274-4305.
doi: 10.3390/ijerph10094274.
Graif, N., Abozaid, S., & Peretz, A. (2020). Trends in distribution and antibiotic
resistance of bacteria isolated from urine cultures of children in Northern Israel between 2010
and 2017. Microbial Drug Resistance, 26(11), 1342-1349. doi: 10.1089/mdr.2020.0111.
Mirsoleymani, S. R., Salimi, M., Shareghi Brojeni, M., Ranjbar, M., & Mehtarpoor, M.
(2014). Bacterial Pathogens and Antimicrobial Resistance Patterns in Pediatric Urinary Tract
Infections: A Four‐Year Surveillance Study (2009–2012). International journal of pediatrics,
(1), 126142. doi: 10.1155/2014/126142.
Lee, H. Y., & Khosla, C. (2007). Bioassay-guided evolution of glycosylated macrolide
antibiotics in Escherichia coli. PLoS biology, 5(2), e45. doi: 10.1371/journal.pbio.0050045.
Mandell, L. A., Marrie, T. J., Grossman, R. F., Chow, A. W., Hyland, R. H., & Canadian
Community-Acquired Pneumonia Working Group. (2000). Canadian guidelines for the initial
management of community-acquired pneumonia: an evidence-based update by the Canadian
Infectious Diseases Society and the Canadian Thoracic Society. Clinical Infectious Diseases,
(2), 383-421. doi: 10.1155/2000/457147.
Merkier, A. K., Rodríguez, M. C., Togneri, A., Brengi, S., Osuna, C., Pichel, M., ... &
Centrón, D. (2013). Outbreak of a cluster with epidemic behavior due to Serratia marcescens
after colistin administration in a hospital setting. Journal of clinical microbiology, 51(7), 2295
doi: 10.1128/JCM.03280-12
Mielko, K. A., Jabłoński, S. J., Milczewska, J., Sands, D., Łukaszewicz, M., & Młynarz,
P. (2019). Metabolomic studies of Pseudomonas aeruginosa. World Journal of Microbiology and
Biotechnology, 35, 1-11. doi: 10.1007/s11274-019-2739-1.
Tingpej, P., Smith, L., Rose, B., Zhu, H., Conibear, T., Al Nassafi, K., ... & Harbour, C.
(2007). Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains
isolated from lungs of adults with cystic fibrosis. Journal of clinical microbiology, 45(6), 1697
doi: 10.1128/JCM.02364-06.
Foxman, B. (2014). Urinary tract infection syndromes: occurrence, recurrence,
bacteriology, risk factors, and disease burden. Infectious Disease Clinics, 28(1), 1-13. doi:
1016/j.idc.2013.09.003.
Hsueh, P. R., Hoban, D. J., Carmeli, Y., Chen, S. Y., Desikan, S., Alejandria, M., ... &
Binh, T. Q. (2011). Consensus review of the epidemiology and appropriate antimicrobial therapy
of complicated urinary tract infections in Asia-Pacific region. Journal of infection, 63(2), 114
doi: 10.1016/j.jinf.2011.05.015.
A‘t Hoen, L., Bogaert, G., Radmayr, C., Dogan, H. S., Nijman, R. J., Quaedackers, J., ...
& Stein, R. (2021). Update of the EAU/ESPU guidelines on urinary tract infections in children.
Journal of pediatric urology, 17(2), 200-207. doi: 10.1016/j.jpurol.2021.01.037.
Esposito, S., Biasucci, G., Pasini, A., Predieri, B., Vergine, G., Crisafi, A., ... & Iughetti,
L. (2022). Antibiotic resistance in paediatric febrile urinary tract infections. Journal of global
antimicrobial resistance, 29, 499-506. doi: 10.1016/j.jgar.2021.11.003.
Boucher, H. W., & Corey, G. R. (2008). Epidemiology of methicillin-resistant
Staphylococcus aureus. Clinical infectious diseases, 46(Supplement_5), S344-S349. doi:
1086/533590.
Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C.
G., ... & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug
resistant bacteria: an international expert proposal for interim standard definitions for acquired
resistance. Clinical microbiology and infection, 18(3), 268-281. doi: 10.1111/j.1469
2011.03570.x.
Zavodnick, J., Harley, C., Zabriskie, K., & Brahmbhatt, Y. (2020). Effect of a female
external urinary catheter on incidence of catheter-associated urinary tract infection. Cureus,
(10). doi: 10.7759/cureus.11113.
Alliance for the Prudent Use of Antibiotics. (2016). General background: about antibiotic
resistance. Tufts University School of Medicine, 136.
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., ... &
Tasak, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic
analysis. The lancet, 399(10325), 629-655. doi: 10.1016/S0140-6736(21)02724-0.
Aghamohammad, S., Badmasti, F., Solgi, H., Aminzadeh, Z., Khodabandelo, Z., &
Shahcheraghi, F. (2020). First report of extended-spectrum betalactamase-producing Klebsiella
pneumoniae among fecal carriage in Iran: high diversity of clonal relatedness and virulence
factor profiles. Microbial Drug Resistance, 26(3), 261-269. doi: 10.1089/mdr.2018.0181.
Degtiar, N. V., Litovchenko, P. P., Znamenskiĭ, V. A., Abu-el-Khava, M. I., &
Nazarchuk, L. V. (1985). Identification of Pseudomonas and other similar gram-negative non
glucose-fermenting bacteria using a minimal number of tests. Laboratornoe Delo, (5), 311-314.
doi: 10.1128/am.15.3.661-664.1967.
Diggle, S. P., & Whiteley, M. (2020). Microbe Profile: Pseudomonas aeruginosa:
opportunistic pathogen and lab rat. Microbiology, 166(1), 30-33. doi: 10.1099/mic.0.000860.
Hu, F., Zhu, D., Wang, F., & Wang, M. (2018). Current status and trends of antibacterial
resistance in China. Clinical Infectious Diseases, 67(suppl_2), S128-S134. doi:
1093/cid/ciy657.
Ahmed, I., Rabbi, M. B., & Sultana, S. (2019). Antibiotic resistance in Bangladesh: A
systematic review. International Journal of Infectious Diseases, 80, 54-61. doi:
1016/j.ijid.2018.12.017.
Effah, C. Y., Sun, T., Liu, S., & Wu, Y. (2020). Klebsiella pneumoniae: an increasing
threat to public health. Annals of clinical microbiology and antimicrobials, 19, 1-9. doi:
1186/s12941-019-0343-8.
Subedi, D., Vijay, A. K., & Willcox, M. (2018). Overview of mechanisms of antibiotic
resistance in Pseudomonas aeruginosa: an ocular perspective. Clinical and Experimental
Optometry, 101(2), 162-171. doi: 10.1111/cxo.12621.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 University of Thi-Qar Journal Of Medicine
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.