Prevalence of the Carbapenem and Fluoroquinolone Resistance Gene among K. pneumoniae Isolated from Genitourinary Tract Infections in Infertile Males

Authors

  • Rasha Mohsen AL-Hussaini Department of Medical Microbiology, College of Medicine, Al-Qadisiyah University, Al-Diwaniyah, Iraq
  • Ibtisam Habeeb Al-Azawi

DOI:

https://doi.org/10.32792/jmed.2025.29.22

Keywords:

Carbapenem Resistance, fluoroquinolone resistance, MDR K. pneumoniae, genitourinary tract infections

Abstract

One of the most significant opportunistic Gram-negative bacteria that frequently
linked to catheter associated and urinary tract infection is Klebsiella pneumoniae.
Their ability to produce biofilms and antibiotic resistance are the two main factors
that contribute to the persistent infections. The dissemination of carbapenems and
fluoroquinolones resistance offers a significant confrontation to the treatment of
life-threatening infections produced by K. pneumoniae. The study aimed to
investigation the prevalence of the carbapenems and fluoroquinolones resistance
genes (blaOXA-48, and qnrS) in K. pneumoniae. From December 2023 until July
2024, a total of 200 samples were collected in this study including urine (n=100,
50%), and semen (n=100, 50%) from admitted patients to Fertility Center and
outpatient from Private Labs in Al-Najaf, Al-Diwaniyah and Karbala
governorates. Semen culture and urine culture were done for all the patients.
Using Vitek2 compact system to identification and susceptibility to antibiotic
profiling of K. pneumoniae. PCR experiment were performed on the isolates with
specific primers to blaOXA-48, and qnrS. The results showed the recovery rate of K.
pneumoniae isolates was (n= 17, 8.5%) from the clinical samples, divided as
follow 13 isolates from urine and four isolates from semen, The prevalence of
carbapenem resistance gene among K. pneumoniae isolates was to blaOXA-48 gene
(64.7%), While fluroquinolones resistance gene qnrS was (94%). The study
concluded increased carbapenem and fluoroquinolone resistance gene in Al
Najaf, Al-Diwaniyah and Karbala governorates highlights the importance of this
problem while managing life-threatening multidrug-resistant K. pneumoniae
infections.

References

Salama, L., Elageery, S., Alkasaby, N., Abou El-Khier, N., Fawzy, I., Zeid, M., & Badr, D. Molecular Characterization of

Carbapenamases in Hypervirulent Klebsiella pneumoniae Isolates among Pediatric Patients. Egyptian Journal of Medical

Microbiology. 2025; 34(1), 111-118. DOI: 10.21608/ejmm.2024.322402.1342

Nordmann P., and Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide.

Clin Microbiol Infect. 2014, 20(9): 821-830. DOI: 10.1111/1469-0691.12719.

Tsai Y.K., Liou C.H., Fung C.P., Lin J.C., and Siu L.K. Single or in combination antimicrobial resistance mechanisms of Klebsiella

pneumoniae contribute to varied susceptibility to different carbapenems. PLOS ONE. 2013, 8(11):

e79640. DOI:

1371/journal.pone.0079640.

Soleimani-Asl Y, Zibaei M, and Firoozeh F. Detection of qnrA gene among quinolone-resistant Escherichia coli isolated from

urinary tract infections in Khorram Abad during 2011-2012. Feyz Medical Sciences Journal. 2013;17(5):488-94. URL:

http://feyz.kaums.ac.ir/article-1-2043-en.html

Ezzulddin, B., & Nooraldeen, M. Study of entB Gene and Some Quinolone Resistance Genes (qnrB and acc(6’)-Ib-cr) of Klebsiella

pneumoniae in Community-Acquired Infections in Kirkuk City. Egyptian Journal of Medical Microbiology. 2025; 34(3), -. DOI:

21608/ejmm.2025.357953.1463

Hoseinzadeh M, Sedighi M, Yahyapour Y, Javanian M, Beiranvand M, Mohammadi M, Zarei S, Pournajaf A, Ebrahimzadeh

Namvar A. Prevalence of plasmid-mediated quinolone resistance genes in extended-spectrum beta-lactamase producing Klebsiella

pneumoniae isolates in northern Iran. Heliyon. 2024; 10(18): e37534. DOI: 10.1016/j.heliyon. 2024.e37534.

Sharaf, S., Ali, H., Salah, M., & Kamel, Z. Insight on the Prevalence of Clinical Klebsiella Isolates Producing Extended Spectrum

Beta-Lactamases. Egyptian Journal of Medical Microbiology. 2024; 33(3), 125-131. DOI: 10.21608/ejmm.2024.298504.1267

Foudraine, D.E.; Strepis, N.; Klaassen, C.H.W.; Raaphorst, M.N.; Verbon, A.; Luider, T.M.; et al. Rapid and Accurate Detection

of Aminoglycoside-Modifying Enzymes and 16S rRNA Methyltransferases by Targeted Liquid Chromatography-Tandem Mass

Spectrometry. J. Clin. Microbiol. 2021; 59(7): e0046421. DOI: 10.1128/JCM.00464-21.

Doménech-Sánchez, A.; Martínez-Martínez, L.; Hernández-Allés, S.; Conejo, M.D.C.; Pascual, A.; Tomás, J.M.; et al. Role of

Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob. Agents Chemother. 2003, 47(10):3332-5. DOI:

1128/AAC.47.10.3332-3335.2003.

El-sayed, H., El Maghraby, H., Hussein, S., El Azawy, D., Attia, O., Mousa, B., Orabi, E., & Fahmy, Y. Acr AB and Oxq AB

Efflux Pump Genes Among Resistant Klebsiella pneumoniae Isolated from Zagazig University Hospitals. Egyptian Journal of Medical

Microbiology. 2024; 33(3), 67-75. DOI: 10.21608/ejmm.2024.297587.1264

Nordmann, P.; Dortet, L.; and Poirel, L. Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends Mol. Med. 2012,

(5): 263–272. DOI: 10.1016/j.molmed.2012.03.003.

Shash R. Y, Mohamed G. A, Sheb S. E., Shokr M, and Soliman A. S. The Impact of Bacteriospermia on Semen Parameters Among

Infertile Egyptian Men:A Case–Control Study. American Journal of Men’s Health. 2023; 17(3):15579883231181861. DOI:

1177/15579883231181861.

Szkodziak F, Krzyżanowski J, Szkodziak P. Psychological aspects of infertility. A systematic review. J Int Med Res. 2020;

(6):300060520932403. DOI: 10.1177/0300060520932403.

Ochsendorf F. R. Sexually transmitted infections: impact on male fertility. Andrologia. 2008, 40(2): 72–75. DOI: 10.1111/j.1439

2007.00825.x.

Zuleta-Gonzalez MC, Zapata-Salazar ME, Guerrero-Hurtado LS, Puerta-Suarez J, and Cardona-Maya WD. Klebsiella pneumoniae

and Streptococcus agalactiae: passengers in the sperm travel. Arch Esp Urol. 2019; 72:939e47. PMID: 31697255.

Chegini, Z.; Khoshbayan, A.; Vesal, S.; Moradabadi, A.; Hashemi, A.; and Shariati, A. Bacteriophage therapy for inhibition of

multi drug-resistant uropathogenic bacteria: A narrative review. Ann. Clin. Microbiol. Antimicrob. 2021, 26;20(1):30. DOI:

1186/s12941-021-00433-y.

Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010, 7(12):653-60. DOI: 10.1038/nrurol.2010.190.

Parija, S. C. Textbook of practical microbiology. Ahuja Publishing House, 2007.

CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. Clinical and Laboratory

Standards Institute, 2021.

Al-Agamy MH, Aljallal A, Radwan HH, and Shibl AM. Characterization of carbapenemases, ESBLs, and plasmid-mediated

quinolone determinants in carbapenem-insensitive Escherichia coli and Klebsiella pneumoniae in Riyadh hospitals. Journal of infection

and public health. 2018;11(1):64-68. DOI: 10.1016/j.jiph.2017.03.010.

Cattoir V., Poirel L., Rotimi V., Soussy C.-J., and Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone

resistance qnr genes in ESBL-producing enterobacterial isolates. Journal of Antimicrobial Chemotherapy. 2007, 60(2): 394–397. DOI:

1093/jac/dkm204.

Al-Azawi I. H. Detection of Extended Spectrum Beta Lactamase (ESBL) in Klebseilla pneumoniae Isolated from Urinary Tract

Infections. AL-Qadisiya Medical Journal. 2014, 10(18): 168-173.

Rawat D, and Nair D. Extended-spectrum beta-lactamases in Gram negative bacteria. J Glob Infect Dis. 2010;2(3):263–274. DOI:

4103/0974-777X.68531.

Agodi A, Barchitta M, Quattrocchi A, et al. Antibiotic trends of Klebsiella pneumoniae and Acinetobacter baumannii resistance

indicators in an intensive care unit of Southern Italy, 2008–2013. Antimicrob Resist Infect Control. 2015;4(1):43–49.

DOI:10.1186/s13756-015-0087-y.

Federico MP, and Furtado GH. Immediate and later impacts of antimicrobial consumption on carbapenem-resistant Acinetobacter

spp., Pseudomonas aeruginosa, and Klebsiella spp. in a teaching hospital in Brazil: a 10-year trend study. Eur J Clin Microbiol Infect

Dis. 2018;37(11):2153–2158. DOI: 10.1007/s10096-018-3352-1.

Qu X, Wang H, Chen C, et al. Surveillance of carbapenem-resistant Klebsiella pneumoniae in Chinese hospitals - a five-year

retrospective study. J Infect Dev Ctries. 2019;13(12):1101–1107. DOI: 10.3855/jidc.11798.

Al-Kamoosi A. M, AL-Azawi I. H. Detection of Capsular Polysaccharide Virulence Genes rmpA and magA of Klebsiella

Pneumonia Isolate from Diabetic Foot Ulcer Patient in Najaf Governorate in Iraq. Indian Journal of Forensic Medicine & Toxicology.

, 15(2): 3061-3067. DOI: https://doi.org/10.37506/ijfmt.v15i2.14841.

Tzouvelekis L.S., Markogiannakis A., Psichogiou M., Tassios P.T., and Daikos G.L. Carbapenemases in Klebsiella Pneumoniae

and Other Enterobacteriaceae: An Evolving Crisis of Global Dimensions. Clin. Microbiol. Rev. 2012; 25(4):682–707. DOI:

1128/CMR.05035-11.

Shibl A., Al-agamy M., Memish Z., Senok A. The Emergence of OXA-48- and NDM-1-Positive Klebsiella pneumoniae in Riyadh,

Saudi Arabia. Int. J. Infect. Dis. 2013;17(12): e1130–e1133. DOI: 10.1016/j.ijid.2013.06.016.

Karn S, Pant ND, Neupane S, Khatiwada S, Basnyat S, and Shrestha B. Prevalence of carbapenem resistant bacterial strains

isolated from different clinical samples: study from a tertiary care hospital in Kathmandu, Nepal. JBS. 2016;3(1):11–15. DOI:

https://doi.org/10.3126/jbs.v3i1.16846.

Datta P, Gupta V, Garg S, and Chander J. Phenotypic method for differentiation of carbapenemases in Enterobacteriaceae: study

from north India. Indian J Pathol Microbiol. 2012;55(3):357–360. DOI: 10.4103/0377-4929.101744.

Bora A, Sanjana R, Jha BK, Mahaseth SN, and Pokharel K. Incidence of metallo-beta-lactamase producing clinical isolates of

Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res Notes. 2014;7(1):557. DOI:10.1186/1756-0500-7-557.

Kishk Rania, Azab Marwa, Hassan Ranya, and Dessouki Omar. Molecular Detection of bla OXA-48 Carbapenemase in

Uropathogenic Klebsiella pneumoniae Strains from Suez Canal University Hospital. Egyptian Journal of Medical Microbiology. 2019,

(3), 71-77. DOI: 10.21608/ejmm.2019.283029

Moodley A and Perovic O. Phenotypic and genotypic correlation of carbapenememase-producing Enterobacteriaceae and

problems experienced in routine screening. S Afr Med J. 2018; 108(6):495-501. DOI: 10.7196/SAMJ.2018.v108i6.12878.

Smriti S, Panda SS, Dash RK, Singh N, Das L, Pattnaik D. Antibiogram of Escherichia coli and Klebsiella pneumoniae Urinary

Isolates and Susceptibility of Amikacin in Extended-spectrum Beta-Lactamase Producers. J Pure Appl Microbiol. 2025;19(1):714-722.

DOI: 10.22207/JPAM.19.1.62

Nishino K, Yamasaki S, Nakashima R, Zwama M, Hayashi-Nishino M. Function and Inhibitory Mechanisms of Multidrug Efflux

Pumps. Front Microbiol. 2021, 3;12:737288. DOI: 10.3389/fmicb.2021.737288.

Livermore DM. Has the era of untreatable infections arrived? J Antimicrob Chemother. 2009;64(1):29–36. DOI:

1093/jac/dkp255.

Minh Vien LT, Baker S, Phuong Thao LT, Phuong Tu LT, Thu Thuy C, Thu Nga TT, Minh Hoang NV, Campbell JI, Minh Yen

L, Trong Hieu N, Vinh Chau NV, Farrar J, Schultsz C. High prevalence of plasmid-mediated quinolone resistance determinants in

commensal members of the Enterobacteriaceae in Ho Chi Minh City, Vietnam. J Med Microbiol. 2009;58(Pt 12):1585-1592. DOI:

1099/jmm.0.010033-0.

Okade H, Nakagawa S, Sakagami T, Hisada H, Nomura N, Mitsuyama J, Yamagishi Y, and Mikamo H. Characterization of

plasmid-mediated quinolone resistance determinants in Klebsiella pneumoniae and Escherichia coli from Tokai, Japan. J. Infect.

Chemother. 2014; 20(12):778-783. DOI: 10.1016/j.jiac.2014.08.018.

Taitt CR, Leski TA, Erwin DP, Odundo EA, Kipkemoi NC, Ndonye JN, et al. antimicrobial resistance of Klebsiella pneumoniae

stool isolates circulating in Kenya. Plos one. 2017; 12(6):e0178880. DOI: 10.1371/journal.pone.0178880.

Sani, G.S., Ghane, M. & Babaeekhou, L. Fluoroquinolone-resistance mechanisms and molecular epidemiology of ciprofloxacin

resistant Klebsiella pneumoniae isolates in Iran. Folia Microbiol. 2023, 68(4): 633–644. DOI: 10.1007/s12223-023-01042-2.

Jacoby GA, Strahilevitz J, and Hooper DC. Plasmid‐mediated quinolone resistance. Microbiol Spectr. 2014;

(5):10.1128/microbiolspec. PLAS-0006-2013. DOI: 10.1128/microbiolspec.

Vol., No. , Year, pp.

Mashaly, G., Mohammed, H., & Nagib, H. Plasmid Mediated Quinolone Resistance Genes (Qnr A and S) in Klebsiella pneumoniae

Isolated from ICU Hospital Acquired Infection. Egyptian Journal of Medical Microbiology. 2022; 31(4), 165-171. DOI:

21608/ejmm.2022.265573

Downloads

Published

2025-12-14

Issue

Section

ARTICLE