Erythropoietin Attenuation Of Early Upregulation Of Kidney Injury Parameters Levels In Cisplatin-Treated Rats


  • Ayad Ali Hussein University of Kufa/ Faculty of Pharmacy/ Department of Pharmacology and Toxicology.


cisplatin, acute kidney injury, erythropoietin, KIM-1, IL-18


Background: cisplatin chemotherapy can cause acute kidney injury (AKI) in about 30% of patients that act as a major dose-limiting problem complicating chemotherapy by cisplatin that still commonly indicated as first line treatment of cancer management without relatively less toxic and equally effective substitutes. Cisplatin induced-DNA damage and oxidative- inflammatory hyper-reactivity with apoptosis are the bases for cisplatin-induced AKI. Erythropoietin has approved antioxidant, anti-inflammatory and to some extent antiapoptotic effects that may have ameliorative effect on early cisplatin-induced AKI. Kidney injury molecules-1 (KIM-1) and interleukin-18 (IL-18) were assumed to be more sensitive for detecting AKI than the traditional kidney function tests (serum creatinine and urea). Objective: assess the effect of erythropoietin on early upregulation of kidney injury parameters after cisplatin treatment. Methods: 27 adult male rats were randomized into three groups containing nine rats for each as follow: Sham group: rats received daily intraperitoneal injection of placebo for 4 days. Cisplatin group: rats received single intraperitoneal injection of 6 mg ̸ kg cisplatin. Cisplatin+Erythropoietin group: rats received single intraperitoneal injection of 6 mg ̸ kg cisplatin and daily intraperitoneal injection of 100 IU ̸ kg erythropoietin for 4 days. After scarification, blood samples are collected for serum creatinine measurement, kidneys are processed for measurement of renal MDA, KIM-1 and IL-18 and histopathlogical evaluation. Results: cisplatin produced significant (P<0.05) change in serum creatinine level, kidney MDA, KIM-1, IL-18 and score of histopathological damage severity when compared to that of other groups. In Cisplatin + Erythropoietin group, Serum creatinine, and kidney MDA, KIM-1, IL-18 and total severity score were significantly (P<0.05) less than that in cisplatin group. Conclusion: erythropoietin ameliorated early cisplatin–induced AKI evidenced by improving early injury parameters that give rise for early involvement of erythropoietin as early preventive measure for protection from nephrotoxicity.


- Hartmann JT, Fels LM, Knop S, Stolt H, Kanz L, Bokemeyer C. A randomized trial comparing the nephrotoxicity of cisplatin/ifosfamide-based combination chemotherapy with or without amifostine in patients with solid tumors. Invest. New Drugs 2000, 18, 281–289.

- Hartmann JT, Lipp HP. Toxicity of platinum compounds. Expert Opin. Pharmacother. 2003, 4, 889–901.

- Sastry J, Kellie SJ. Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr. Hematol. Oncol. 2005, 22, 441–445

- Arany I, Safirstein RL. Cisplatin nephrotoxicity. SeminNephrol 2003,23, 460–4

- Boulikas, T. Poly(ADP-ribose) synthesis in blocked and damaged cells and its relation to carcinogens. Anticancer Res. 1992, 12, 885–898

- Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334(2):115-124

- Deng,J.,Kohda,Y.,Chiao,H.,Wang,Y.,Hu,X.,Hewitt,S.M.,Miyaji,T.,McLeroy,P.,Nibhanupudy, B., Li, S., and Star, R. A.: Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury, Kidney Int. 2001, 60, 2118-2128.

- Ramesh G, and Reeves WB. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity, J. Clin. Invest., 2002, 110, 835-842.

- Dong Z, and Atherton S.Tumor necrosis factor-alpha in cisplatin nephrotoxicity: a homebred foe? Kidney Int., 72, 5e7 (2007).Dong and Atherton 2007

- Li, M, Balamuthusamy, S. Khan, A M. Maderdrut JL. Simon, EE. and Batuman, V.: Pituitary adenylate cyclase-activating polypeptide prevents cisplatin-induced renal failure, J. Mol. Neurosci., 43, 58e66 (2011).Li et al.,2011

- Ramesh, G and Reeves, WB.: Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-alpha, Kidney Int., 65, 490e499 (2004).Ramesh and Reeves 2004

- Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273:4135–42.

- Bailly V, Zhang Z, Meier W, Cate R, Sanicola M, Bonventre JV. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem. 2002;277:39739–48.

- Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 2004;286:F552–63.

- Humphreys TL, Lee Ann Baldridge, Steven D. Billings, James J. Campbell, Stanley M. Spinola Trafficking Pathways and Characterization of CD4 and CD8 Cells Recruited to the Skin of Humans Experimentally Infected with Haemophilus ducreyi Infect Immun. 2005 Jul; 73(7): 3896–3902.

- Prozialeck WS, Vaidya VS, Liu J, Waalkes MP, Edwards JR, Lamar PC, Bernard AM, Dumont X, Bonventre JV. Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity Kidney Int. 2007 Oct; 72(8): 985–993.

- Zhou Y, Vaidya SV, Brown RP, Zhang J, Barry A. Rosenzweig, Karol L. Thompson KL, Miller TJ, Bonventre JV, Goerin PL. Comparison of Kidney Injury Molecule-1 and Other Nephrotoxicity Biomarkers in Urine and Kidney Following Acute Exposure to Gentamicin, Mercury, and Chromium. Toxicol Sci. 2008 Jan; 101(1): 159–170.

- Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62:237–44.

- Vaidya VS, Ozer JS, Frank D, Fitz B. Collings FB, Ramirez V, Troth S, Muniappa N, Thudium D, Gerhold D, Holder DJ, Bobadilla NA, Marrer E, Perentes E, Cordier A, Vonderscher J, Maurer G, Goering PL, Sistare FD, Bonventre JV. Kidney Injury Molecule-1 Outperforms Traditional Biomarkers of Kidney Injury in Multi-site Preclinical Biomarker Qualification Studies Nat Biotechnol. 2010 May; 28(5): 478–485.

- Vaidya VS1, Waikar SS, Ferguson MA, Collings FB, Sunderland K, Gioules C, Bradwin G, Matsouaka R, Betensky RA, Curhan GC, Bonventre JV. Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci. 2008;1(3):200-8.

- Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A, Quintal L, Sekut L, Talanian R, Paskind M, Wong W, Kamen R, Tracey D, Allen H. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production Nature. 1997 Apr 10;386(6625):619-23.

- Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, Hayashi N, Higashino K, Okamura H, Nakanishi K, Kurimoto M, Tanimoto T, Flavell RA, Sato V, Harding MW, Livingston DJ, Su MS. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science. 1997 Jan 10;275(5297):206-9.

- Gracie JA, Robertson SE, McInnes IB . Interleukin-18. J Leukoc Biol 2003;73 : 213 –224.

- Parikh CR, Jani A, Melnikov VY, et al. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis.2004, 43, 405-414

- Parikh CR, Abraham E, Ancukiewicz M, et al. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the ICU. J Am Soc Nephrol.2005, 16, 3046-3052.

- Faubel S1, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, Oh DJ, Lu L, Klein CL, Dinarello CA, Edelstein CL. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther. 2007 ;322(1):8-15

- Fisher JW et al. Erythropoietin production by interstitial cells of hypoxic monkey kidneys. Br J Haemato. 1996, 95: 27-32

- Warnecke C et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1 alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J. 2004, 18: 1462-1464.

- Scortegagna M, Ding K,Zhang Q, Oktay Y, Bennett MJ, Bennett M, Shelton JM, Richardson JA, Moe O, Garcia A. HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood. 2005, 105:3133-3140.

- Fisher JW. Erythropoietin: physiology and pharmacology update. ExpBioi Med (Maywood). 2003, 228: 1-14.

- Anagnostou A et al. Erythropoietin receptor mRNA expression in human endothelial cells. ProcNatlAcadSci USA. 1994, 91: 3974-3978.

- Chong zz. et al. Hematopoietic factor erythropoietin fosters neuroprotection through novel signal transduction cascades. J Cereb Blood Flow Metab.2002, 22: 503- 514

- Johnson DW, Pat B, Vesey DA, Guan Z, Endre Z, Gobe GC. Delayed administration of dar.bepoetin or erythropoietin protects against ischemic acute renal injury and failure. Kidney Int. 2006;69(10):1806-1813.

- Westenfelder C. Unexpected renal actions of erythropoietin. ExpNephrol. 2002;10(5-6):294-298.

- Jie KE et al. rythropoietin and the cardiorenal syndrome: cellular mechanisms on the cardiorenal connectors. Am J Physiol Renal Physio. 2006, 291: F932-F944

- Beleslin-Cokic BB et al. (2004) Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood 104: 2073-2080

- Salahudeen AK, Haider N, Jenkins J, et al. Antiapoptotic properties of erythropoiesis-stimulating proteins in models of cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol. 2008;294(6):F1354-F1365

- Ma R, Xiong N, Huang C, et al. Erythropoietin protects PC12 cells from beta-amyloid(25-35)-induced apoptosis via PI3K/ Akt signaling pathway. Neuropharmacology. 2009;56(6-7): 1027-1034.

- Garg K, Yadav HN, Singh M, Sharma PL. Mechanism of cardioprotective effect of erythropoietin-induced preconditioning in rat heart. Indian J Pharmacol. 2010;42(4):219-223.

- Mao W, Iwai C, Liu J, Sheu SS, Fu M, Liang CS. Darbepoetinalfa exerts a cardioprotective effect in autoimmune cardiomyopathy via reduction of ER stress and activation of the PI3K/Akt and STAT3 pathways. J Mol Cell Cardiol. 2008; 45(2):250-260.

- Beuge JA, Aust SD. Microsomal lipid peroxidation. Meth Enzymol 1978; 52: 302-311.

- McWhinnie DL, Thompson JF, Taylor HM, Chapman JR, Bolton EM, Carter NP, et al. Morphometric analysis of cellular infiltration assessed by monoclonal antibody labeling in sequential human renal allograft biopsies. Transplantation 1986;42: 352–358.

- Striz I, Krasna E, Honsova E, Lacha J, Petrickova K, Jaresova M, Lodererova A, Bohmova R, Valhova S, Slavcev A, Vitko S. Interleukin 18 (IL-18) upregulation in acute rejection of kidney allograft. Immunol Lett. 2005 Jun 15;99(1):30-5.

- Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies, Kidney Int. 2008, 73, 994e1007.

- Hung YC, Huang GS, Lin LW, Hong MY, Se PS. Theasinensis melanin prevents cisplatin-induced nephrotoxicity in mice. Food Chem. Toxicol. 2007, 45, 1123–1130.

- Shimeda Y, Hirotani Y, Akimoto Y, Shindou K, Ijiri Y, Nishihori T, Tanaka K Protective effects of capsaicin against cisplatin-induced nephrotoxicity in rats Biol. Pharm. Bull. 2005, 28(9) 1635—1638.

- Palipoch S, Punsawad C. Biochemical and histological study of rat liver and kidney injury induced by Cisplatin. J Toxicol Pathol. 2013 Sep;26(3):293-9.

- El-Beshbishy HA, Bahashwan SA, Aly HA, Fakher HA. Abrogation of cisplatin-induced nephrotoxicity in mice by alpha lipoic acid through ameliorating oxidative stress and enhancing gene expression of antioxidant enzymes. Eur J Pharmacol. 2011; 668: 278- 284

- Rashed LA, Hashem RM, Soliman HM. Oxytocin inhibits NADPH oxidase and P38 MAPK in cisplatin-induced nephrotoxicity. Biomed Pharmacother 2011; 65: 474-480

- Deyang Kong , Zhuo L, ChangluGao, Shi S, Wang N, Huang Z, Li W, LirongHao. Erythropoietin protects against cisplatin-induced nephrotoxicity by attenuating endoplasmic reticulum stress-induced apoptosis. JNEPHROL 2013; 26(01): 219- 227.

- Kharbanda S, Ren R, Pandey P, et al. Activation of the c- Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature. 1995;376(6543):785-788

- Bagnis C, Beaufils H, Jacquiaud C et al. Erythropoietin enhances recovery after cisplatin-induced acute renal failure in the rat. Nephrol Dial Transplant 2001; 16: 932–938

- Liu H, Baliga R. Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am SocNephrol. 2005;16(7):1985-1992

- Mehmeti I, Gurgul-Convey E, Lenzen S, Lortz S. Induction of the intrinsic apoptosis pathway in insulin-secreting cells is dependent on oxidative damage of mitochondria but independent of caspase-12 activation. BiochimBiophysActa. 2011;1813(10):1827-1835.

- Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals,enhancing cytochrome c release to the cytosol. J Cell Biol. 2003;160(7):1115-11273

- Benjamin B, Ebert L, Bunn HF. Regulation of erythropoietin gene. Blood. 1999;94:1864–1877.

- Siren AL, Ehrenreich H. Erythropoietin – a novel concept for neuroprotection. Eur Arch Psychiatry Clin Neurosci. 2001;251:179–184.

- Calo LA, Bertipaglia L, Pagnin E. Antioxidants, carnitine and erythropoietin. G Ital Nefrol. 2006;34:547–550.

- Ates E, Yalcin AU, Yılmaz S, Koken T, Tokyol C. Protective effect of erythropoietin on renal ischemia and reperfusion injury. ANZ J Surg. 2005;75:1100–1115.

- Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, et al. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA. 1998;95:4635–40.

- Bahlmann FH et al. Erythropoietin regulates endothelial progenitor cells. Blood. 2004, 103. 921-926.