Evaluation the Role of Certain Pancreatic Beta Cells Stress and/or Death Biomarkers in Patients with Diabetes Mellitus Type 1


  • Hussein Chaseb Awad College of Health and Medical Technology/Al-Basrah, Southern Technical University, Ministry of Higher Education and Scientific Research, Iraq
  • Khwam R. Hussein Al-Nasiriyah Technical Institute, Southern Technical University, Ministry of Higher Education and Scientific Research, Iraq
  • Hasan Abd Ali Khudhair Al-Nasiriyah Technical Institute, Southern Technical University, Ministry of Higher Education and Scientific Research, Iraq
  • Mahmood Thamer Altemimi Thi-Qar Specialized Diabetes Endocrine Metabolism Center, Thi-Qar Health Directorate, Thi-Qar, 64001, Iraq


T1D, C. peptide, IA-2A, β-cells


    Type 1diabetes (T1D) occurs due to immune system dysregulation and invading pancreatic beta (β)-cells  by auto-reactive immune T cells, which leads to decreases of β-cells activity and viability in addition to prolonged therapy with exogenous insulin. The primary aim of this study was to delve into and explore the roles of adiponectin (ADP) and islet antigen-2 autoantibody (IA-2A) as potential predictors and/or diagnostic biomarkers for T1D and to determine the effects of them on pancreatic β-cells dysfunction. A case-control investigation was conducted between the months of August and December 2022, which included three study groups; the T1D group which included 35 newly diagnosed T1D patients, first degree relatives (FDRs) group which included a total of 35 FDRs of T1D patients and healthy control (HC) group with a total of 20 healthy individuals. Serum levels of connecting (C) peptide, ADP, and IA-2A were measured for all study participants using an enzyme-linked immune sorbent assay (ELISA). The results showed significantly lower levels of C. peptide and ADP among T1D and FDRs subjects in comparison to HC group, whereas the IA-2A level was significantly higher in T1D and FDRs subjects than in HC subjects. The level IA-2A revealed a significant positive association with the levels of C. peptide and ADP within T1D and FDRs groups, whereas there exists a positive correlation between ADP levels and C. peptide levels across all research groups. The combination between lower C. peptide and ADP levels and higher IA-2A levels is the most robust and cost-effective predictive and diagnostic biomarker for T1D. The positive relationship between ADP and C. peptide indicated a possible utility of higher ADP levels as a marker of low β-cells stress and/or death, whereas the positive relationship between ADP and IA-2A indicated the vital anti-inflammatory role of ADP. High IA-2A level at the time of T1D diagnosis does not predict the degree of pancreatic β-cells stress and/or death.  


Assmann, T. S., Recamonde-Mendoza, M., De Souza, B. M., & Crispim, D. (2017). MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatic analysis. Endocrine Connections, 6(8), 773–790.

Borg, H., Gottsater, A., Landin-Olsson, M., Fernlund, P., & Sundkvist, G. (2001). High levels of antigen-specific islet antibodies predict futureβ-cell failure in patients with onset of diabetes in adult age. The Journal of Clinical Endocrinology & Metabolism, 86(7), 3032–3038.

Brorsson, C. A., Onengut, S., Chen, W.-M., Wenzlau, J., Yu, L., Baker, P., Williams, A. J. K., Bingley, P. J., Hutton, J. C., & Eisenbarth, G. S. (2015). Novel association between immune-mediated susceptibility loci and persistent autoantibody positivity in type 1 diabetes. Diabetes, 64(8), 3017–3027.

Cai, T., Hirai, H., Zhang, G., Zhang, M., Takahashi, N., Kasai, H., Satin, L. S., Leapman, R. D., & Notkins, A. L. (2011). Deletion of Ia-2 and/or Ia-2β in mice decreases insulin secretion by reducing the number of dense core vesicles. Diabetologia, 54, 2347–2357.

Chang, Y.-H., Shiau, M.-Y., Tsai, S.-T., & Lan, M. S. (2004). Autoantibodies against IA-2, GAD, and topoisomerase II in type 1 diabetic patients. Biochemical and Biophysical Research Communications, 320(3), 802–809.

Costa, O. R., Stangé, G., Verhaeghen, K., Brackeva, B., Nonneman, E., Hampe, C. S., Ling, Z., Pipeleers, D., Gorus, F. K., & Martens, G. A. (2015). Development of an enhanced sensitivity bead-based immunoassay for real-time in vivo detection of pancreatic β-cell death. Endocrinology, 156(12), 4755–4760.

Damanhouri, L. H., Dromey, J. A., Christie, M. R., Nasrat, H. A., Ardawi, M. S. M., Robins, R. A., & Todd, I. (2005). Autoantibodies to GAD and IA‐2 in Saudi Arabian diabetic patients. Diabetic Medicine, 22(4), 448–452.

Delic-Sarac, M., Mutevelic, S., Karamehic, J., Subasic, D., Jukic, T., Coric, J., Ridjic, O., Panjeta, M., & Zunic, L. (2016). ELISA test for analyzing of incidence of type 1 diabetes autoantibodies (GAD and IA2) in children and adolescents. Acta Informatica Medica, 24(1), 61.

Garcia‐Serrano, S., Gutiérrez‐Repiso, C., Gonzalo, M., Garcia‐Arnes, J., Valdes, S., Soriguer, F., Perez‐Valero, V., Alaminos‐Castillo, M. A., Francisco Cobos‐Bravo, J., & Moreno‐Ruiz, F. J. (2015). C‐peptide modifies leptin and visfatin secretion in human adipose tissue. Obesity, 23(8), 1607–1615.

Grace, S. L., Bowden, J., Walkey, H. C., Kaur, A., Misra, S., Shields, B. M., McKinley, T. J., Oliver, N. S., McDonald, T. J., & Johnston, D. G. (2022). Islet autoantibody level distribution in type 1 diabetes and their association with genetic and clinical characteristics. The Journal of Clinical Endocrinology & Metabolism, 107(12), e4341–e4349.

Gupta, P., Liu, Y., Lapointe, M., Yotsapon, T., Sarat, S., & Cianflone, K. (2015). Changes in circulating adiponectin, leptin, glucose and C‐peptide in patients with ketosis‐prone diabetes. Diabetic Medicine, 32(5), 692–700.

Hecht Baldauff, N., Tfayli, H., Dong, W., Arena, V. C., Gurtunca, N., Pietropaolo, M., Becker, D. J., & Libman, I. M. (2016). Relationship of adiponectin and leptin with autoimmunity in children with new‐onset type 1 diabetes: a pilot study. Pediatric Diabetes, 17(4), 249–256.

Kaas, A., Pfleger, C., Hansen, L., Buschard, K., Schloot, N. C., Roep, B. O., & Mortensen, H. B. (2010). Association of adiponectin, interleukin (IL)-1ra, inducible protein 10, IL-6 and number of islet autoantibodies with progression patterns of type 1 diabetes the first year after diagnosis. Clinical & Experimental Immunology, 161(3), 444–452.

Karamifar, H., Habibian, N., Amirhakimi, G., Karamizadeh, Z., & Alipour, A. (2013). Adiponectin is a good marker for metabolic state among type 1 diabetes mellitus patients. Iranian Journal of Pediatrics, 23(3), 295.

Kawasaki, E. (2023). Anti-Islet Autoantibodies in Type 1 Diabetes. International Journal of Molecular Sciences, 24(12), 10012.

Kettaneh, A., Heude, B., Oppert, J.-M., Scherer, P., Meyre, D., Borys, J.-M., Ducimetière, P., & Charles, M.-A. (2006). Serum adiponectin is related to plasma high-density lipoprotein cholesterol but not to plasma insulin-concentration in healthy children: the FLVS II study. Metabolism, 55(9), 1171–1176.

KHUDHAIR, H. A. B. D. A. L. I. (2019). Possible Roles of miRNAs-25 and 375 as Potent Biomarkers for β-cells Stress and/or Death in Diabetes Type 1 Patients and their First Degree Relatives. International Journal of Pharmaceutical Research, 11(3).

Kim, B., & Hyun, C.-K. (2020). B-Cell-Activating factor depletion ameliorates aging-dependent insulin resistance via enhancement of thermogenesis in adipose tissues. International Journal of Molecular Sciences, 21(14), 5121.

Knip, M., Korhonen, S., Kulmala, P., Veijola, R., Reunanen, A., Raitakari, O. T., Viikari, J., & Åkerblom, H. K. (2010). Prediction of type 1 diabetes in the general population. Diabetes Care, 33(6), 1206–1212.

Kuhtreiber, W. M., Washer, S. L. L., Hsu, E., Zhao, M., Reinhold III, P., Burger, D., Zheng, H., & Faustman, D. L. (2015). Low levels of C‐peptide have clinical significance for established Type 1 diabetes. Diabetic Medicine, 32(10), 1346–1353.

Lebastchi, J., & Herold, K. C. (2012). Immunologic and metabolic biomarkers of β-cell destruction in the diagnosis of type 1 diabetes. Cold Spring Harbor Perspectives in Medicine, 2(6), a007708.

Lee, Y., Magkos, F., Mantzoros, C. S., & Kang, E. S. (2011). Effects of leptin and adiponectin on pancreatic β-cell function. Metabolism, 60(12), 1664–1672.

Lehuen, A., Diana, J., Zaccone, P., & Cooke, A. (2010). Immune cell crosstalk in type 1 diabetes. Nature Reviews Immunology, 10(7), 501–513.

Leslie, R. D., Evans-Molina, C., Freund-Brown, J., Buzzetti, R., Dabelea, D., Gillespie, K. M., Goland, R., Jones, A. G., Kacher, M., & Phillips, L. S. (2021). Adult-onset type 1 diabetes: current understanding and challenges. Diabetes Care, 44(11), 2449–2456.

Mathieu, C., Lahesmaa, R., Bonifacio, E., Achenbach, P., & Tree, T. (2018). Immunological biomarkers for the development and progression of type 1 diabetes. Diabetologia, 61, 2252–2258.

Semple, R. K., Halberg, N. H., Burling, K., Soos, M. A., Schraw, T., Luan, J., Cochran, E. K., Dunger, D. B., Wareham, N. J., & Scherer, P. E. (2007). Paradoxical elevation of high–molecular weight adiponectin in acquired extreme insulin resistance due to insulin receptor antibodies. Diabetes, 56(6), 1712–1717.

Shackelton, L. A., Parrish, C. R., Truyen, U., & Holmes, E. C. (2005). High rate of viral evolution associated with the emergence of carnivore parvovirus. Proceedings of the National Academy of Sciences, 102(2), 379–384.

Sheet, M. M., & Khudhair, H. A. A. (2019). Beta-cell Death and/or Stress Biomarkers in Diabetes Mellitus Type. Al-Kufa University Journal for Biology, 11(1).

Shetty, V., Jain, H. R., Singh, G., Parekh, S., & Shetty, S. (2017). C-peptide levels in diagnosis of diabetes mellitus: a case-control study. International Journal of Scientific Study, 4(11), 7–13.

Stern, N., Osher, E., & Greenman, Y. (2007). Hypoadiponectinemia as a marker of adipocyte dysfunction—Part I: the biology of adiponectin. Journal of the CardioMetabolic Syndrome, 2(3), 174–182.

Törn, C. (2003). C-peptide and autoimmune markers in diabetes. Clinical Laboratory, 49(1–2), 1–10.

Wahren, J., Kallas, Å., & Sima, A. A. F. (2012). The clinical potential of C-peptide replacement in type 1 diabetes. Diabetes, 61(4), 761–772.

Wang, K., Baldassano, R., Zhang, H., Qu, H.-Q., Imielinski, M., Kugathasan, S., Annese, V., Dubinsky, M., Rotter, J. I., & Russell, R. K. (2010). Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Human Molecular Genetics, 19(10), 2059–2067.

Zou, C. C., Liang, L., & Hong, F. (2007). Relationship between insulin resistance and serum levels of adiponectin and resistin with childhood obesity. Indian Pediatrics, 44(4), 275.

Sheet, M. M., & Khudhair, H. A. A. (2019). Beta-cell Death and/or Stress Biomarkers in Diabetes Mellitus Type. Al-Kufa University Journal for Biology, 11(1).

Wang C, Guan Y, Yang J. Cytokines in the progression of pancreatic β-cell dysfunction. International journal of endocrinology. 2010 Oct;2010.